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Boundary based shape orientation
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Abstract

The computation of a shape’s orientation is a common task in the area of computer vision and image processing, being used for example to
define a local frame of reference and is helpful for recognition and registration, robot manipulation, etc. It is usually an initial step or a part
of data preprocessing in many image processing and computer vision tasks. Thus, it is important to have a good solution for shape orientation
because an unsuitable solution could lead to a big cumulative error at the end of the computing process. There are several approaches to the
problem—most of them could be understood as the ‘area based’ ones, or at least they do not take into account all the boundary points (if a
shape orientation measure is based on its encasing rectangle, only the convex hull points count, for example). Thus, the demand for a pure
‘boundary based’ method, where the orientation of the shape is dependent on the boundary points seems to be very reasonable. Such a method
is presented in this paper. We are initially focused on the shapes having polygonal boundaries. We define the orientation of a polygonal shape
by the line that maximises the total sum of squared lengths of all the boundary edge projections onto this line. The advantages and limitations
of the new method are analysed.

Next, we suggested how the method can be adapted in order to be applicable to a wider class than the initial method is. Finally, we
introduced another modification of the method in such a way that the modified method can be applied to shapes with arbitrary boundaries.
Several illustrative experiments are provided.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many image processing and shape analysis tasks start with
a normalisation procedure [1–3]. For a successful application
(in robotics, medical imaging, industry inspection tasks, etc.) it
is important that the position and orientation of the shape un-
der consideration are properly determined. Shape position and
orientation define the frame of reference. Usually, the shape
position is defined by its center of gravity, which is a very com-
mon approach. On the other hand, computing the orientation is
not a straightforward task and consequently, there are several
approaches in defining the shape orientation.

∗ Corresponding author. Tel.: +44 1392 26 4044; fax: +44 1392 26 4067.
E-mail addresses: J.Zunic@ex.ac.uk (J. Žunić),
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In fact, due to the variety of shapes as well as the diversity
of applications there is probably no single method for com-
puting shape orientation that could be efficiently and success-
fully applicable to all shapes. For that reason, several methods
have been developed [4–10]. Different techniques have been
used, including those based on geometric moments, complex
moments, and principal component analysis, for example. The
suitability of those methods strongly depends on the particu-
lar situation to which they are applied, as they each have their
relative strengths and weaknesses.

Particular problems arise when working with symmetric
shapes that obviously do not have a uniquely defined orien-
tation. It is reasonable to assume that for each M-fold sym-
metric shape there are M concurrent directions that define the
shape orientation. Note that rotation-symmetric and reflective-
symmetric shapes appear very often not only in industry (as
machine made products) but also in nature (e.g. human faces,
crystals). The related problems (a detected symmetry axis
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could define shape orientation, for example) are intensively
studied [6,7,9–15], as well.

It is worth mentioning the practical value of orientability
in human visual perception. For instance, orientable shapes
can be matched more quickly than shapes with no distinct
axis [16].

The majority of the existing methods for computing the ori-
entation are ‘area based’—i.e. the computation takes into ac-
count all points that belong to the shape not only the bound-
ary points. Among those area based methods, the most stan-
dard one says that shape orientation is determined by its axis
of the least second moment of inertia [1–3]. The axis of the
least second moment of a shape is defined as a line that min-
imises the integral of the squared distances of the shape points
to the line. When working with shapes represented by a set of
discrete points (set of pixels, for example) then the ‘integral’
should be replaced with the ‘sum’. Obviously, the method is
motivated very naturally. Also, because it is area based, the
standard method is very robust with respect to noise and bound-
ary defects. Moreover, it is simple to compute in both ‘real’
and ‘discrete’ versions—even the closed formulas for the com-
putation of the orientation could be derived in both versions.
For example, if Ost (S) denotes the orientation of the shape S
computed by the standard method (i.e., Ost (S) is the slope of
the axis of the last second moment of S) then

sin(2·Ost (S))

cos(2 · Ost (S))

=
2·∫∫ S

(
x−

∫∫
Sx dx dy∫∫
S dx dy

)
·
(
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∫∫

Sy dx dy∫∫
S dx dy

)
dx dy

∫∫
S

(
x−

∫∫
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S dx dy

)2

dx dy−∫∫ S

(
y−

∫∫
Sy dx dy∫∫
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)2

dx dy

.

(1)

The problem is that there are many situations when this
method does not give any answer as to what the shape orien-
tation should be. There are many regular and irregular shapes
where this standard method does not work [10,17]. M-fold
(M > 2) rotationally symmetric shapes are well known as
shapes that cannot be oriented by the standard method. A use
of higher order moments of inertia to determine the orientation
of such shapes is proposed in Ref. [10]. Some useful properties
of the method proposed in Ref. [10] are proven in Ref. [17].
The same paper gives a particular attention to the situations
where the odd-order moments are used. Thus, sometime shape
orientation tasks do not perform well because they do not fit
well with a particular application in which they are used, but
sometimes they could not perform well simply because of the
nature of the considered shape. Regarding this problem, a new
shape descriptor, named as shape orientability, is introduced
in Ref. [18]. Such a new shape descriptor should indicate is the
computed shape orientation an inherent property of the con-
sidered shape or the computed shape orientation results from
digitisation and noise effects, for example. The new orientabil-
ity measure is tested on both real and synthetic examples and
it performs well. Particularly, it is invariant with respect to
similarity transformations and the lowest possible orientability

is assigned to a circle, while the highest possible orientability
is assigned to a straight line segment.

Also, while in many situations the robustness of a method
is a desirable property sometimes it could be a disadvan-
tage. It could happen that some (by the standard method)
“nonorientable” shapes could be oriented by existing narrow
intrusions into the shape interior or by scribble details on them.
Those details correspond to a relatively small percentage of
pixels (when working with digital images) and their impact
is not easily detectable by robust methods. In this paper we
present a method where the orientation is computed based on
the shape boundary and consequently could overcome such
problems. In a typical situation, the complete boundary is
taken into account—not only parts belonging to the convex
hull of the considered shape [19,20], for example. The method
can be applied to imperfect data—i.e. to shapes whose bound-
aries are partially detected or to shapes where small details are
considered as boundary parts.

The paper is organized as follows. The new method for com-
puting the orientation of polygonal shapes is described in Sec-
tion 2. The method is analysed in detail in Section 3. Sections
4 and 5 give some modifications of the method. These modifi-
cations are presented in order to satisfy the additional demands
that shape orientation methods should have depending on the
situations that they are applied to. Section 6 contains conclud-
ing remarks.

2. Boundary based polygonal shape orientation

In this section we define a new method for polygonal shapes
orientation. We do not restrict ourselves to polygonal shapes.
In real image processing tasks we deal with digital data where
the objects are presented by sets of sample points (e.g. pixels)
and consequently, there is always an inherent loss of informa-
tion about the boundaries of the original shapes. In most sit-
uations, the equations (or other precise descriptions) of shape
boundaries remain unknown. In order to preserve easier data
manipulation, shape boundaries are usually piecewise approx-
imated with straight line segments, conic arcs, or spline arcs.
Of course, approximating the boundary by a number of straight
line segments (i.e. a use of polygonal approximation) is algo-
rithmically simplest and computationally fastest.

Another argument for using polygonal approximations is that
there are a variety of good algorithms for polygonal approxi-
mations of discrete shapes (for an overview see [21]).

Here we define the orientation Onew(P ) of a polygonal shape
P by the direction that maximises the total sum of the squared
lengths of the projections of all the shape edges onto a line
defined by this direction—see Fig. 1 for an illustration. The
formal definition follows.

Definition 2.1. Let P be a shape with a polygonal boundary P.
The orientation Onew(P ) of P is defined by the angle � such
that the total sum

F(�, P ) =
∑

e is an edge of P

|pr�a(e)|2 (2)
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Fig. 1. Projections of the edges of the polygonal shape (having vertices
P1, P2, P3, P4) onto lines having the slope � are presented.

α

a
>− − 

P1

P4 P3

P2P2

P3

P3

P1

y

x

’

Fig. 2. The computed orientation Onew(�P1P2P3) is 90◦. The computed ori-
entation Onew(�P1P2P ′

3) is 0◦. The computed orientation Onew(P1P2P3P4)

is 0◦.

of squared lengths of projections of the edges of P onto a line
having the slope � is maximal.

It is clear that new definition is naturally motivated. Also, in
some canonical cases, when the orientation of polygonal shape
seems to be straightforward, the method gives the expected re-
sults. The orientation of a rectangle is expected to be coinci-
dent with its longer edges, while the orientation of a symmetric
triangle having a very long height should be coincident with
its symmetry axis, for example. That is exactly what happens
when the new method is applied. Without loss of generality we
can assume that an edge of the considered rectangle and one
edge of the considered triangle are parallel to the x-axis—for
notations we refer to Fig. 2.

• For the rectangle P1P2P3P4 let |P1P2| = |P3P4| = p and
|P2P3| = |P4P1| = q. The sum of the squared projections of
the edges onto a line having the slope � is

2 · p2 · cos2� + 2 · q2 · sin2�

= 2 · (p2 − q2) · cos2� + 2 · q2.

Consequently:
◦ If p > q the maximum is 2 · p2 and it is reached for

� = 0, i.e., the rectangle is oriented in accordance with
the longer edges.

◦ If p < q the maximum is 2 ·q2 and it is reached for �=
�/2 and, again, the rectangle is oriented in accordance
with the longer edges.

◦ If p = q then the rectangle degenerates into a square
and the method does not suggest what the orientation
should be. The sum of the squared projection of edges
is the same for all �. The orientation of rotationally
symmetric shapes (as a square is) will be discussed in
more details later on.

• For the triangle �P1P2P3 let � = � (P2P1P3) = � (P1P2P3).
The sum of the squared projections of the edges onto a line
having the slope � is

q2 · cos2� + p2 · cos2(� + �) + p2 · cos2(� − �),

where the p denotes the length of the edges P3P1 and P2P3
while q denotes the length of P1P2. Taking into account
cos � = q/2p and by using elementary transformations
the total sum of squares of the edge projections can be
expressed as

2 · (q2 − p2) · cos2� + 2 · p2 ·
(

1 − q2

4 · p2

)
.

So,
◦ If q < p then the maximum is reached for � = �/2 and

the orientation coincides with the axis of symmetry.
◦ If q > p then the maximum is reached for � = 0 and

the orientation is orthogonal to the axis of symmetry.
Note: The obtained orientation is debatable if p is close
to q, but it is very acceptable if q is much bigger than
p. Particularly, in the limit case when p → q/2 the tri-
angle degenerates into a horizontal line segment whose
measured orientation should be 0◦, as given by the
method.

◦ If q = p the sum of the squared edge projections is
2p2 − q2/2 and it does not depend on �. Consequently
the method does not tell what the orientation should
be. Once again, M-fold rotationally symmetric shapes
(such as a regular triangle) will be considered later on.

• It is worth mentioning that the exactly same orientations are
obtained if the shape bounded by �P1P2P3 is oriented by
the standard method.

In the previous two simple cases the orientation was easy
to compute. The question is: How does the method work in
the case of an arbitrary polygonal area? We will show that
the method can be applied easily to all polygonal shapes.
Furthermore, it is not solely applicable to closed polygonal
lines, which can be of interest when working with incomplete
data. i.e. when some boundary parts are missed or are not ex-
tracted properly. Also, there is a formal characterisation of the
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situations when the method does not tell us what the orientation
should be. This is a very desirable property. We proceed with
the following theorem.

Theorem 2.1. Let P be an n-gon with edges ei, i = 1, . . . , n.
Also, let �i (for i = 1, . . . , n) denote the angle between ei and
the x-axis. If the total sum

F(�, P ) =
n∑

i=1

|pr�a(ei)|2

of the squared lengths of the projections of the edges ei onto a
line having slope � reaches its maximum then

tan(2 · �) =
∑n

i=1 |ei |2 sin(2�i )∑n
i=1 |ei |2 cos(2�i )

. (3)

Proof. Let �a = (cos �, sin �) be the unit vector in the direction
�, while ei and �i (i = 1, . . . , n) are as stated in the theorem.
The length of the projection pr�a(ei) of the edge ei onto a line
having slope � is

|pr�a(ei)| = |ei | · |(cos �i cos � + sin �i sin �)|
= |ei | · | cos(�i − �)|,

and the function that should be minimised (in order to compute
the orientation of P) is

F(�, P ) =
n∑

i=1

|pr�a(ei)|2 =
n∑

i=1

|ei |2cos2(�i − a). (4)

The maximum of F(�, P ) can be computed in a standard man-
ner. The first derivative dF(�, P )/d� can be expressed as

dF(�, P )

d�
=

n∑
i=1

|ei |2 sin(2�i − 2�)

=
n∑

i=1

|ei |2(sin(2�i ) cos(2�) − cos(2�i ) sin(2�)).

(5)

Setting

dF(�, P )

d�
= 0

we obtain that the angle � for which F(�, P ) reaches the max-
imum satisfies the equality

sin(2�)

cos(2�)
=
∑n

i=1 |ei |2 sin(2�i )∑n
i=1 |ei |2 cos(2�i )

,

which completes the proof. �

At the end of this section, it is worth giving three remarks
that follow directly from the proof of the above given theorem.

Remark 1. Since F(�, P ) is a continuous function, it reaches
its extreme values on the closed interval [0, 2�]. For a given

polygon P those extreme values are easy to compute in accor-
dance with Eq. (3). If the maximum is reached at point � = �0
then the minimum is reached at the point � = �0 + �/2.

Remark 2. Due to the simplicity of the method it is expected
that there are situations when the method does not give an an-
swer regarding what the shape orientation should be. Inciden-
tally, this was already shown in the case of a regular triangle
and in the case of a square. Now we can give a formal charac-
terisation of shapes for which the method does not work. Let
P be a shape with a polygonal boundary. Looking at Eq. (5)
we can see that dF(�, P )/d� = 0 (i.e. F(�, P ) = constant) is
equivalent to

n∑
i=1

|ei |2 cos(2�i ) = 0 and
n∑

i=1

|ei |2 sin(2�i ) = 0. (6)

That implies that Eq. (6) is the “necessary and sufficient
condition” for F(�, P ) = constant. Consequently, if Eq. (6)
holds, the method does not suggest any particular direction as
a candidate for the orientation of P. Later on we will show that
dF(�, P )/d� = 0 holds for all shapes having more than two
axes of symmetry or more generally, for all M-fold rotationally
symmetric shapes, with M > 2.

Remark 3. Theorem 2.1 holds if P is an arbitrary polygo-
nal curve (not necessarily a closed polygon). Moreover, the
statement is valid if P consists of several not necessarily con-
nected polygonal arcs. That is of importance when working
with shapes whose orientation can be defined by scribble de-
tails.

3. Discussion and some examples

In this section we illustrate how the method works in practice.
For each shape presented in Fig. 3 both, orientation Onew(P )

computed by the new method and orientation Ost (P ) computed
by the standard method (the numbers in the brackets) are given.
It is obvious that in the case of essential intrusions or in the
case of long thin details a big difference between two computed
orientations is possible. For instance, the impact of the trunk
position change is much higher if the sketch of elephant is
oriented by the new method than if it is oriented by the standard
method (see shapes (a1) and (a2)). Also, the new method gives
that the orientation Onew(P ) of the sketch of rabbit strongly
depends on the position of its ears—such an impact is lower
if the standard method is applied (shapes (a3) and (a4)). The
essential difference in the intrusion position of the shapes (a5)
and (a6) cannot be detected by the standard method (for both
shapes the computed orientation is 110◦), while such a change
has a big impact on the computed orientation if the new method
is applied.

The first four examples in the second row illustrate a very
useful property of the new method which does not hold if the
standard method is applied. A man’s silhouette (shape (b1))
has the same computed orientation 91◦ if both methods are
applied. If the orientation of a compound shape (shape (b2))
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Fig. 3. Computed orientations Onew(P ) are listed bellow shapes. Orientations Ost (P ) computed by the standard method are in brackets. Dashed lines show
Onew(P ) orientations while dotted lines show Ost (P ) orientations.

that consists of two silhouettes is oriented then the new method
gives a very acceptable orientation of 92◦ while the standard
method gives an unacceptable orientation of 121◦. A similar
situation arises with the next two shapes (b3) and (b4). While a
single aircraft is properly oriented by both methods, a group of
three aircraft is properly oriented by the new method while the
standard method gives an unacceptable orientation. Because of
importance, we point out this property by the following lemma.

Lemma 3.1. If a compounded object consists of several polyg-
onal shapes that have an identical orientation �0 computed by
the new method then the new method assigns the same orien-
tation �0 to the compounded object.

Proof. Let Q be a compound object that consists of m polyg-
onal shapes Pi , with 1� i�m. Then the function F(�, Q) can
be expressed as F(�, Q) = ∑

1� i �m F(�, Pi). Since all the
functions F(�, Pi) reach their maximum for � = �0 we have
P(�, Q)�

∑
1� i �mF(�0, Pi). Finally, since for � = �0 the

function P(�, Q) reaches its upper bound given by the previous
inequality, we establish the proof. �

The last two shapes in Fig. 3 (shapes (b5) and (b6)) present
two cases where orientations computed by both methods differ,

Fig. 4. Computed orientations Onew(P ) are given to illustrate noise effects.

but it seems that there is no reason to prefer one of the methods.
Since the new method is boundary based, it has to be very

sensitive to the boundary defects (caused by a noise, for exam-
ple). In Fig. 4 a polygonal line is presented in order to illustrate
the possible noise effects on the computed orientation. Some
low level noise effects can be corrected by a suitable choice of
polygonal approximation (shape in the middle), but once again,
big boundary defects (the last shape) must lead to an essential
change in the computed orientation. Fig. 4 also illustrates that
the method can be applied to the open polygonal lines.

The expectation that the orientation of a shape coincides with
its axis of symmetry, should it have exactly one, is already dis-
cussed in relation with triangles �P1P2P3 and �P ′

1P
′
2P

′
3 from

Fig. 1. As mentioned in the first instance, such a coincidence
between the symmetry axis and shape orientation could seem
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to be reasonable. But, considering a reflectively symmetric
triangle with a very small height, a (triangle) orientation which
is orthogonal to its axis of symmetry is more acceptable. Such
an orientation is computed if the new method is applied (see
Section 2).

The next theorem shows that the new method computes such
an orientation if applied to an arbitrarily reflective symmetric
shape. More precisely, the next lemma shows that the computed
orientation of a reflective symmetric shape is either consistent
or orthogonal to one of its symmetry axes (for some illustrations
of the statement see Figs. 3 and 6).

Lemma 3.2. Let P be a reflective symmetric polygonal shape,
and let one of its symmetry axes have slope �. Then the total
sum F(�, P ) of squared projections of the edges of P onto a line
reaches its maximum (minimum) either for �=� or �=�+�/2,
and consequently the computed orientation Onew(P ) is either
� or � + �/2.

Proof. Without loss of generality we can assume that � = 0
i.e., the x-axis is one of the symmetry axes of P. The edges
e1, e2, . . . , en of P can be divided into two disjoint groups that
belong to two half planes determined by the x-axis. (If an edge
intersects the x-axis it should be split onto two parts each one
belonging to the opposing half planes.)

Let e′
1, e

′
2, . . . , e

′
m be edges lying above the x-axis and let

�′
i be the corresponding angles between those edges and the

x-axis.
Also, let e′′

1 , e′′
2 , . . . , e′′

m be edges lying below the x-axis and
let �′′

i be the corresponding angles between those edges and the
x-axis, such that

|e′
i | = |e′′

i | and �′′
i = 180 − �′

i for all i = 1, 2, . . . , m.

Then,

F(�, P ) =
∑

ei is an edge of P

|ei |2 cos2(�i − �)

=
m∑

i=1

|e′
i |2 cos2(�′

i − �) +
m∑

i=1

|e′′
i |2 cos2(�′′

i − �)

=
m∑

i=1

|e′
i |2(cos2(�′

i − �) + cos2(180 − �′
i − �))

= 2 ·
m∑

i=1

|e′
i |2(cos2 �′

i · cos2 � + sin2 �′
i · sin2 �)

= 2 ·
m∑

i=1

|e′
i |2 sin2 �′

i

+ 2 ·
m∑

i=1

|e′
i |2(cos2�′

i − sin2 �′
i ) · cos2 �

=
∑

ei is an edge of P

|ei |2 sin2 �i

+
∑

ei is an edge of P

|ei |2(cos2 �i − sin2 �i ) · cos2�.

So, we distinguish three situations:

• ∑
ei is an edge of P |ei |2

(
cos2�i − sin2�i

)
> 0 then F(�, P )

reaches its maximum for � = 0 and the minimum for � =
�/2. The symmetry axis corresponds to the computed shape
orientation.

• ∑
ei is an edge of P |ei |2(cos2�i − sin2�i ) < 0 then F(�, P )

reaches its minimum for � = 0 and the maximum for � =
�/2. The symmetry axis is orthogonal to the computed shape
orientation.

• ∑
ei is an edge of P

|ei |2(cos2�i − sin2�i )= 0 then F(�, P ) is a

constant function. The minimum and maximum are the same
and reached at any point. The method does not suggest what
the orientation should be. �

4. Limitations of the method

Already presented examples illustrate that the new method
gives reasonable orientations. On the other hand, it is already
illustrated that there are some situations where the new method
does not work. It has been already shown that the function
F(�, P ) is a constant function if P is a regular triangle or if
P is a square. This implies that no direction could be pointed
out as the shape orientation. Eqs. (6) are formal conditions
that have to be satisfied if a polygonal shape cannot be ori-
ented by the method presented here. There are many shapes,
regular and irregular, that satisfy those criteria. A particular
class of shapes whose orientation cannot be computed by the
new method is the class of M-fold rotationally symmetric
shapes (M > 2). The next lemma shows that for each polygo-
nal shape having more than two axes of symmetry and more
generally, each M-fold rotationally symmetric (with M > 2)
shape P, the function F(�, P ) is constant and consequently
the shape orientation Onew(P ) cannot be computed by the new
method.

Lemma 4.1. If a polygonal shape with boundary P is M-fold
rotationally symmetric and if M > 2 then F(�, P ) is a constant
function.

Proof. The proved equality (3) shows that there only four ex-
treme points (two maxima and two minima) of the function
F(�, P ) on the interval [0, 2�) or F(�, P ) is constant. If P is
M-fold rotationally symmetric with M > 2 then the function
F(�, P ) must have (at least) one minima and one maxima at
each interval of the form[
(i − 1) · 2�

M
, i · 2�

M

)
, i = 1, . . . , M

or it is a constant function. Because M > 2 is assumed there
cannot be 2M strict extreme points, which implies that F(�, P )

is constant. That establishes the proof. �

The result of the previous lemma is not a surprise. A similar
situation occurs is if the standard method is applied—for details
see [10,17]. Due to its simplicity, the function F(�, P ) is not a
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strong enough mathematical tool that can be used to define the
orientation for many-fold rotationally symmetric shapes. It is
worth mentioning that it is not expected for the orientation of
M-fold rotationally symmetric shapes to be uniquely defined.
The most natural result is to have M directions that concurrently
define the shape orientation. The mutual angles between these
directions should be i · 2�/M where i = 1, . . . , M . Thus, if we
would like to have a computable orientation for a wider shape
class (that includes rotationally symmetric shapes) the method
should be modified. The replacement of the exponent 2 in Eq.
(2) with a bigger number seems to be a natural modification.
We give the following definition.

Definition 4.1. Let P be a shape with a polygonal boundary.
Then, the shape orientation Onew,2N(P ) is defined by the angle
� such that the total sum

F2N(�, P ) =
∑

ei is an edge of P

|pr�a(ei)|2N

=
∑

ei is an edge of P

|ei |2N cos2N(�i − �) (7)

of 2N -powers of the lengths of the projections of the edges of
P onto a line having the slope � is the maximal possible.

The “complexity” of F2N(�, P ) increases with an increase
of N. In order to have F2N(�, P ) = constant the polygon P
has to satisfy stronger criteria than in the case of N = 2. But
due to the diversity of the shapes involved, as big exponent 2N

is chosen it is always possible to find a polygon P such that
F2N(�, P ) is constant, and consequently, the method cannot be
used for the computation of the orientation of P. Particularly,
M-fold rotationally symmetric shapes with M > 2N are such
shapes, as stated by the following theorem.

Theorem 4.1. Let P be the boundary of an M-fold rotation-
ally symmetric polygonal shape. Then F2N(�, P ) is constant if
2N < M .

Proof. Let P be an M-fold rotationally symmetric polygon.
First, we will derive that there are not more than 4N values of
� for which dF2N(�, P )/d� vanishes.

Indeed, starting from

dF2N(�, P )

d�

=d(
∑

ei is an edge of P |ei |2N(cos �i cos �+sin�isin�)2N)

d�
=

∑
ei is an edge of P

2N ·|ei |2N(cos�icos�+sin�isin�)2N−1

× (− cos �i sin � + sin �i cos �) (8)

we distinguish two situations (denoted by (i) and (ii)) depending
on the values of dF2N(� = 0, P )/d� and dF2N(� = �, P )/d�:

(i) If � = 0 and � = � (i.e. sin � = 0) are not solutions of
dF2N(�, P )/d� = 0, then we have from Eq. (8)

dF2N(�, P )

d�
= 0

⇔ (sin �)2N

×
∑

ei is an edge of P

|ei |2N(cos �i cot � + sin �i )
2N−1

× (− cos �i + sin �i cot �) = 0.

Since the quantity∑
ei is an edge of P

|ei |2N(cos �i cot � + sin �i )
2N−1

× (− cos �i + sin �i cot �) (9)

is a 2N -degree polynomial on cot � it cannot have more than
2N real zeros

cot �1 = z1, cot �2 = z2, . . . , cot �k = zk (k�2N).

Since cot � = cot(� + �) we deduce that the equation

dF2N(�, P )

d�
= 0

has no more than 4N solutions, assuming that F2N(�, P ) is not
a constant function.

(ii) If � = 0 and � = � (i.e., sin � = 0) are solutions of
dF2N(�, P )/d� = 0, then (see Eq. (8))∑
ei is an edge of P

|ei |2N · cos2N−1�i · sin �i = 0. (10)

But, in such a situation the quantity Eq. (9) is an (2N − 1)-
degree polynomial in cot � since the coefficient of (cot �)2N

vanishes (because of Eq. (10)). Consequently, the polynomial
(9) cannot have more than 2N − 1 real zeros:

cot �1 = z1, cot �2 = z2, . . . , cot �k = zk (k�2N − 1),

i.e. there are no more than 2(2N − 1)= 4N − 2 values of � for
which the sum (9) (and consequently dF2N(�, P )/d�) vanishes.
So, again, including � = 0 and � = �, the total number of zeros
of dF2N(�, P )/d� = 0 is not bigger than 4N .

Thus, in both cases ((i) and (ii)) the number of zeros of
dF2N(�, P )/d� is upper bounded by 4N .

On the other hand, if P is a fixed M-fold rotationally symmet-
ric polygon, then F2N(�, P ) must have (because of the symme-
try) at least M local minima and M local maxima (one minimum
and one maximum at any interval of the form [�, �+2�/M), or
it must be a constant function. That means that dF2N(�, P )/d�
must have (at least) 2M zeros �1, �2, . . . , �2M .

Fig. 5. Orientation of manifold rotational symmetric shapes.
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Table 1
Orientations as computed by applying Definition 4.1 to the shapes from Fig. 5

Fig. 5(a1) Fig. 5(a2) Fig. 5(a3) Fig. 5(a4)

Onew,2(P ) not computable not computable not computable not computable
Onew,4(P ) not computable 88◦ not computable not computable
Onew,6(P ) 0◦ 89◦ not computable 172◦
Onew,8(P ) 0◦ 90◦ not computable 175◦
Onew,10(P ) 0◦ 90◦ 0◦ 176◦

Fig. 6. Presented shapes are oriented by using F2N(�, P ) for different values
of N. The obtained results are in Table 2.

Since the presumption 2N < M does not allow 2M zeros of
dF2N(�, P )/d� if F2N(�, P ) is not a constant function, we just
derived a contradiction. So, F2N(�, P ) must be constant for all
2N less than M. �

Several many fold rotationally symmetric shapes are pre-
sented in Fig. 5, while their orientations computed based on
F2N(�, P ) for N = 1, 2, 3, 4, and 5 are in Table 1. The re-
sults are in accordance with Theorem 4.1. A regular trian-
gle (Fig. 5(a1)) cannot be oriented if F2(�, P ) and F4(�, P )

are used, while a use of F6(�, P ), F8(�, P ), and F10(�, P )

gives a 0◦ orientation—of course the orientations 120◦ and
240◦ are congruent to the orientation of 0◦ and F2N(0◦, P ) =
F2N(120◦, P )=F2N(240◦, P ) holds in the presented case. Just
to mention that a modification of the standard method from [17]
gives, a perhaps more acceptable, orientation of 60◦. The shape
in Fig. 5(a2) is 4-fold rotationally symmetric, and consequently
cannot be oriented if F2(�, P ) is used. A use of F4(�, P ),

F6(�, P ), F9(�, P ), and F10(�, P ) leads to acceptable results.
The similar discussion is valid for the last two shapes in Fig. 5.

Irregular shapes in Fig. 6 are oriented by using F2N(�, P )

for different values of N. Shapes Fig. 6(a1)–(a4) are almost
reflectively symmetric and their computed orientations are in
accordance with Lemma 3.2 (if F2(�, P ) is used). The shape
in Fig. 6(b2) seems to be “well orientable” (i.e. it has a distinct
orientation) and that is the reason that there are no big variations

Table 2
Orientations Onew,2N(P ) are computed for the shapes from Fig. 6

Fig. 6(a1) Fig. 6(a2) Fig. 6(a3) Fig. 6(a4)

Onew,2(P ) 91◦ 0◦ 89◦ 91◦
Onew,4(P ) 91◦ 0◦ 90◦ 93◦
Onew,6(P ) 91◦ 0◦ 90◦ 95◦
Onew,8(P ) 92◦ 0◦ 90◦ 98◦
Onew,10(P ) 92◦ 0◦ 90◦ 99◦

Fig. 6(b1) Fig. 6(b2) Fig. 6(b3) Fig. 6(b4)
Onew,2(P ) 140◦ 103◦ 127◦ 114◦
Onew,4(P ) 137◦ 103◦ 144◦ 123◦
Onew,6(P ) 134◦ 102◦ 149◦ 133◦
Onew,8(P ) 134◦ 102◦ 150◦ 135◦
Onew,10(P ) 138◦ 102◦ 151◦ 135◦

Fig. 6(c1) Fig. 6(c2) Fig. 6(c3) Fig. 6(c4)
Onew,2(P ) 44◦ 10◦ 96◦ 67◦
Onew,4(P ) 46◦ 178◦ 94◦ 126◦
Onew,6(P ) 48◦ 178◦ 96◦ 128◦
Onew,8(P ) 48◦ 179◦ 98◦ 128◦
Onew,10(P ) 48◦ 179◦ 100◦ 129◦

in the computed orientation when 2N changes. The rest of the
results are acceptable.

5. Orientation of shapes with arbitrary boundaries

In Section 2, a new method for the orientation of polygonal
shapes was described. Many shapes are polygonal by nature:
machine made products, crystals, house outlines on satellite im-
ages, etc. Also, many shapes can be efficiently approximated by
polygonal shapes that have relatively few edges. In the initial
version given by Definition 2.1, the method has some undesir-
able properties. One of them is that there are situations where
the method does not work. Many-fold rotationally symmetric
shapes are shapes that could not be oriented if the initial version
is applied. A modification of the method is proposed (in the
previous section) in order to overcome the apparent problems.

Another modification will be described in this section. It is
motivated by the following natural question: If a curve is re-
placed by a polygonal line whose vertices are sample points
belonging to the curve, does the computed orientation Onew(P )

(defined by Definition 2.1) converge when the maximum dis-
tance between consecutive points decrease to zero? In other
informal words, we consider whether the computed orientation
of a curve (not necessarily a polygonal one) converges when
the density of the curve sample points increases (see Fig. 7 for
an illustration).
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Fig. 7. Fifty randomly selected points (xi , x
2
i
) are displayed. The polygonal line (0, 0) = (x1, x2

1 ), (x2, x2
2 ), . . . , (x49, x2

49), (x50, x2
50) = (1, 1) is oriented by

the new method. The following orientations are obtained: (a1) 40◦; (a2) 48◦; (a3) 56◦.

We need some well-known mathematics to verify this. Taking
into account trivial trigonometric identities

sin(2�) = 2 tan �

1 + tan2�
and cos(2�) = 1 − tan2�

1 + tan2�
(11)

and the fact that the first derivative ẏ/ẋ = (dy/dt)/(dx/dt)

of a curve given as x = x(t), y = y(t) equals the tangent of
the angle between the curve tangent and the x-axis, we obtain
the following identities (12) and (13) that hold for piecewise
smooth enough curves.

Lemma 5.1. Let C be a piecewise smooth enough curve given
in parametric form x = x(t), y = y(t) where t ∈ [a, b]. Let

A1 = (x(t = a), y(t = a)), A2, . . . , Ak−1,

Ak = (x(t = b), y(t = b))

be points from the curve C, and let �i denotes the angle between
the

−−−−→
AiAi+1 and the x-axis. Then

lim
k→∞

max{|AiAi+1|,1� i<k}→0

k−1∑
i=1

|AiAi+1| · sin(2�i )

=
∮

C

2ẋẏ

ẋ2 + ẏ2
ds =

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt (12)

and

lim
k→∞

max{|AiAi+1|,1� i<k}→0

k−1∑
i=1

|AiAi+1| · cos(2�i )

=
∮

C

ẋ2 − ẏ2

ẋ2 + ẏ2
ds =

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt . (13)

Thus if the number of the points on the curve increase
such that the maximum distance between consecutive points
tends to zero, both quantities

∑k−1
i=1 |AiAi+1| · sin(2�i ) and∑k−1

i=1 |AiAi+1| · cos(2�i ) converge, as given by (12) and (13).

Also, since∣∣∣∣∣∣
∑

1� i<k

|AiAi+1|2 · sin(2�i )

∣∣∣∣∣∣ � max{|AiAi+1|, 1� i < k}

×
∑

1� i<k

|AiAi+1| · sin(2�i )

i.e.∣∣∣∣∣∣
∑

1� i<k

|AiAi+1|2 · cos(2�i )

∣∣∣∣∣∣ � max{|AiAi+1|, 1� i < k}

×
∑

1� i<k

|AiAi+1| · cos(2�i )

and because of Eqs. (12), (13), and max{|AiAi+1|, 1� i < k} →
0 we have

lim
k→∞

max{|AiAi+1|,1� i<k}→0

k−1∑
i=1

|AiAi+1|2 · sin(2�i ) = 0,

lim
k→∞

max{|AiAi+1|,1� i<k}→0

k−1∑
i=1

|AiAi+1|2 · cos(2�i ) = 0.

The quantities
∑k−1

i=1 |AiAi+1|2 · sin(2�i ) and
∑k−1

i=1 |AiAi+1|2 ·
cos(2�i ) actually appear in Eq. (3) and their ratio equals the
tangent of the double angle that is the assigned orientation
Onew(L) to the polygonal line L determined by the sample
points. The convergence of such a ratio∑k−1

i=1 |AiAi+1|2 · sin(2�i )∑k−1
i=1 |AiAi+1|2 · cos(2�i )

is not guaranteed in a general case. That is illustrated by Fig. 7:
Fifty points xi are selected at random three times. The polygonal
line having vertices (0, 0) = (x1, x

2
1 ), (x2, x

2
2 ), . . . , (x49, x

2
49),
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(x50, x
2
50)=(1, 1) is oriented by the new method. The following

orientations are obtained:

• Fig. 7(a1). The computed orientation is 40◦.
• Fig. 7(a2). The computed orientation is 48◦.
• Fig. 7(a3). The computed orientation is 56◦.

Note: The abscissas of the selected points are can be found
in Ref. [22].

Starting from the trivial inequalities

min{|AiAi+1|, 1� i < k}
max{|AiAi+1|, 1� i < k} ·

∑
1� i<k |AiAi+1| sin(2�i )∑
1� i<k |AiAi+1| cos(2�i )

�
∑

1� i<k|AiAi+1|2 sin(2�i )∑
1� i<k |AiAi+1|2 cos(2�i )

(14)

and∑
1� i<k |AiAi+1|2 sin(2�i )∑
1� i<k |AiAi+1|2 cos(2�i )

� max{|AiAi+1|, 1� i < k}
min{|AiAi+1|, 1� i < k}
×
∑

1� i<k |AiAi+1| sin(2�i )∑
1� i<k |AiAi+1| cos(2�i )

(15)

we can see that the convergence of the computed orientations
is guaranteed if

|AiAi+1| = |AjAj+1| for all i, j from {1, 2, . . . , k − 1} (16)

holds. In such a case min{|AiAi+1|,1� i<k}
max{|AiAi+1|,1� i<k}= max{|AiAi+1|,1� i<k}

min{|AiAi+1|,1� i<k} =
1 and consequently (by Eqs. (12)–(15)) the computed orienta-
tion converges to a fixed value � that satisfies

tan(2�) =

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

. (17)

If Eq. (16) is not preserved we have the following estimate for
computed orientations

1

K
· L� tan(2�)�K · L, (18)

where

K = max{|AiAi+1|, 1� i < k}
min{|AiAi+1|, 1� i < k}

and

L =

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

.

The problem is that it is very difficult (almost impossible in
real applications) to preserve that Eq. (16) be satisfied. On the
other hand, the described convergence would be a very nice

property if working with shapes that are not polygonal by their
nature or when working with shapes that do not have a simple
(but reasonably good) polygonal representation.

In order to overcome such problems we define another
shape orientation Omod(P ) which is actually a modification of
Onew(P ).

Definition 5.1. Let P be a shape with a polygonal boundary.
The shape orientation Omod(P ) is defined by the angle � for
which the total sum

G(�, P ) =
∑

e is an edge of P

|pr�a(e)|2
|e|

=
∑

e is an edge of P

|e| · cos2(�i − �) (19)

reaches the maximum.

Table 3 shows orientations of shapes if they are oriented
in accordance with Definition 5.1. As it can be seen from
Table 3, orientations Onew(P ) and Omod(P ) introduced by
Definition 2.1 and Definition 5.1 perform similarly on the
shapes presented on Figs. 3–6. A general conclusion that can be
made is that the impact of the long edges is smaller in the case
of a use of Omod(P )—which is natural since the edge lengths
participate as a linear term in Definition 5.1 (see Eq. (19)) while
they participate as a square term in Definition 2.1 (see also
Eq. (4)). As an illustration, Fig. 8 displays the graphs of
F(�, P ) and G(�, P ) where P is the boundary of the shape pre-
sented in Fig. 3(a6). The standard method gives the orientation
100◦ while the orientation Omod is 142◦, i.e. F(�, P ) reaches
the maximum for � = 142◦. This change from 100◦ to 142◦ is
caused by a deep, almost horizontal, intrusion. As expected, the
impact of such an intrusion is smaller if G(�, P ) is used (edge
lengths participate as linear terms) and computed orientation
Omod is 130◦, i.e. G(�, P ) reaches the maximum for �= 130◦.
Just to mention that in the presented case (see Fig. 8),where the
measure unit is actually the pixel size, F(�, P ) varies approx-
imatively between 3,745,000 and 8,000,000 while G(�, P )

varies approximatively between 6690 and 9000. Since the edges
of the presented shape are essentially bigger then 1 (i.e. bigger
than the pixel size) such a much higher variation is expected in
the case of F(�, P ) where the edge length participate as squared
quantities.

It is very important to notice that in all the cases pre-
sented in Fig. 7 the orientations computed by Definition 5.1
are consistent and all are equal to 46◦—which illustrates the
“convergence” property of this method. That can be understood
as a big advantage with respect to the computations based
on Definition 2.1 which give divergent orientations 40◦, 48◦,
and 56◦.

A few more examples are given in Fig. 9. Shapes (a1)–(a4)
are by their nature presented by open lines. The last shape (a5)
illustrates the application on the shape whose boundary is not
completely extracted.

Based on the previous discussion we give a preference to
the orientation Omod(P ) against the orientation Onew(P ). The
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Table 3
Shape orientations Omod(P ) computed by using Definition 5.1

Fig. 3(a1) Fig. 3(a2) Fig. 3(a3) Fig. 3(a4) Fig. 3(a5) Fig. 3(a6)
100◦ 106◦ 164◦ 119◦ 107◦ 130◦

Fig. 3(b1) Fig. 3(b2) Fig. 3(b) Fig. 3(b4) Fig. 3(b5) Fig. 3(b6)
91◦ 93◦ 89◦ 89◦ 100◦ 40◦

Fig. 4(a1) Fig. 4(a2) Fig. 4(a3) Fig. 4(a) Fig. 4(a5)
0◦ 175◦ 171◦ 175◦ 135◦

Fig. 5(a1) Fig. 5(a2) Fig. 5(a3) Fig. 5(a4)
Not computable Not computable Not computable Not computable

Fig. 6(a1) Fig. 6(a2) Fig. 6(a3) Fig. 6(a4)
91◦ 0◦ 89◦ 90◦

Fig. 6(b1) Fig. 6(b2) Fig. 6(b3) Fig. 6(b4)
142◦ 102◦ 124◦ 112◦

Fig. 6(c1) Fig. 6(c2) Fig. 6(c3) Fig. 6(c4)
44◦ 22◦ 100◦ 40◦

Fig. 7(a1) Fig. 7(a2) Fig. 7(a3)
46◦ 46◦ 46◦
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Fig. 8. The abscissas in both graphs measure the angle � in radians. The ordinate in (a1) measures F(�, P ), while the ordinate in (a2) measures G(�, P )—in
both cases the measure unit equals the pixel size. P is the shape in Fig. 3(a6).

proved “convergence” property is the only reason for our
choice.

Now, we give the following theorem that summarises the
useful properties of Omod(P ). The proofs are omitted because
of the analogy to the already proven statements.

Theorem 5.1. Let C be a piecewise smooth enough curve given
in parametric form x = x(t), y = y(t) where t ∈ [a, b]. Let
A1=(x(t=a), y(t=a)), A2, . . . , Ak−1, Ak=(x(t=b), y(t=b))

be points from the curve C while �i denotes the angle between
the edge ei = [AiAi+1] and the x-axis.

If A1, A2, . . . , Ak are consecutive vertices of a polygonal
line (not necessarily closed) P then:

(a) The angle � for which the function G(�, P ) =∑
ei is an edge of P

|pr�a(ei )|2
|ei | reaches its maximum satisfies

tan(2 · �) =
∑

ei is an edge of P |ei | · sin(2�i )∑
ei is an edge of P |ei | · cos(2�i )

; (20)

(b) If P is reflectively symmetric then the orientation Omod(P )

computed by the method defined by Definition 5.1 is
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Fig. 9. Orientations Omod(P ) introduced by Definition 5.2 are below considered polygonal lines. Orientations Onew(P ) are in brackets.

coincident with one of the symmetry axes of P or it is
orthogonal to one of them;

(c) If P is M-fold rotationally symmetric, with M > 2, then
G(�, P ) is a constant function and it cannot be used to
compute the orientation of P ;

(d) Let the number k of sample points Ai from the curve
C increase such that max{|AiAi+1|, 1� i < k} → 0.
If Pk is the polygon line determined by the vertices
A1, A2, . . . , Ak and if �k is the point where the function
G(�, Pk) reaches the maximum then

lim
k→∞

max{|AiAi+1|,1� i<k}→0

tan(2�k) =

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

. (21)

Because of item (d) of Theorem 5.1 it is natural to extend the
applicability of the orientation Omod(P ) to the class of shapes
with a smooth enough boundary (not necessarily polygonal) in
the following way.

Definition 5.2. Let C be a shape with its boundary given in a
parametric form: x = x(t), y = y(t) while t ∈ [a, b]. Then, the
orientation Omod(C) of C is given by

tan(2 · Omod(C)) =

∫ b

a

2ẋẏ√
ẋ2 + ẏ

2
dt

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

. (22)

Remark 4. If C is a polygonal line (with edges ei and the
corresponding angles �i (1� i�n)), it can be also represented
in the form x = x(t), y = y(t), t ∈ [a, b]. It is important to
notice that the orientation of C can be computed by applying
both formulas (20) and (22), i.e.,

tan(2 · Omod(C)) =
∑n

i=1 |ei | · sin(2�i )∑n
i=1 |ei | · cos(2�i )

=

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

.

holds. That is the reason why we use the same notationOmod(P )

in both Definitions 5.1 and 5.2.

We proceed with an example which illustrates the applica-
tion of Definition 5.2 and the item (d) of Theorem 5.1 to a
parabolic arc. Let us consider a parabola arc C(v) given by
y = x2 and x ∈ [0, v). In accordance with Definition 5.2,
and by using the parametrisation x = t , y = t2, t ∈ [0, v),
the orientation Omod(C(v)) of such an arc computed by (22)
satisfies:

tan(2 · Omod(C(v))) =

∫ v

0
2ẋẏ√

ẋ2 + ẏ2
dt

∫ v

0
ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

=
∫ v

0
4t√

1 + 4t2
dt

∫ v

0
1 − 4t2

√
1 + 4t2

dt

=
√

1 + 4v2 − 1
3
4 ln(2v + √

1 + 4v2) − 1
2v

√
1 + 4v2

(the graph of the function
√

1+4v2−1
3
4 ln(2v+

√
1+4v2)− 1

2 v
√

1+4v2
is in

Fig. 10(a2)).
The limit values

lim
v→0

√
1 + 4v2 − 1

3
4 ln(2v + √

1 + 4v2) − 1
2v

√
1 + 4v2

= lim
v→∞

√
1 + 4v2 − 1

3
4 ln(2v + √

1 + 4v2) − 1
2v

√
1 + 4v2

= 0

are in accordance with our expectation: For v very small (close
to zero) the arc C has the orientation Omod(C(v)) very close to
0◦ but also that for a very large v the orientation Omod(C(S))

is close to 90◦.

Further, the function
√

1+4v2−1
3
4 ln(2v+

√
1+4v2)− 1

2 s
√

1+4v2
has a dis-

continuity at v0 ≈ 0.9799 that corresponds to the value v = v0
for which the arc C(v0) has the orientation Omod(C(v0))=�/4
(notice that then limε→±0 tan(2 · Omod(C(v0 − ε))) = ±∞).
Since the standard definition of the function arctan(x) maps
(−∞, ∞) → (−�/2, �/2) the orientation Omod(C(v)) should
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Fig. 10. (a1) The graph of the orientation Omod(C(v)) is displayed. (a2) The graph of the function
√

1+4v2−1
3
4 ln(2v+

√
1+4v2)− 1

2 v
√

1+4v2
is displayed.

be computed as

Omod(C(v)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2
arctan

( √
1 + 4v2 − 1

3
4 ln(2v +

√
1 + 4v2) − 1

2 v
√

1 + 4v2

)

if v ∈ (0, v0),

�
2

+1

2
· arctan

( √
1+4v2−1

3
4 ln(2v+

√
1+4v2)− 1

2 v
√

1+4v2

)

if v∈(v0, ∞).

The graph of the function Omod(C(v)) is in Fig. 10(a1).

6. Concluding remarks

In this paper we dealt with computing shape orientation based
on the shape boundary. Initially we focused on shapes that have
polygonal boundaries. That is not a strong restriction. In com-
puter vision applications, we work with discrete data, which are
very often approximated with canonical primitives in order to
preserve more efficient image manipulation or a more efficient
storage. The approximation of discrete shape boundaries with
suitably chosen polygonal lines is a very common approach in
practical applications, but circular arcs and splines of a given
degree are also in use. As mentioned, we started with the ori-
entation of polygonal shapes, but a later modification of the
method enables us to evaluate the orientation of shapes with
curved boundaries.

First we defined the orientation Onew(P ) of a polygonal
shape by the line that maximises the total sum of squared values
of the length of projections of the edges of the shape bound-
ary onto this line. That is a very natural definition that can
also be applied directly to open polygonal lines, or to a set of
such polygonal lines. This is an advantage when working with
shapes whose boundaries are not extracted completely (because
the shape pixels and background pixels are very similar, or be-
cause the considered object is partially overlaid, for example),
or with shapes with characteristic scribble details that have to
be taken into account when a shape is being oriented. Since the

method is boundary based it is not expected to be particularly
robust, but the sensitivity of the method could be an advantage
in some particular applications (e.g. when working with high
precision inspection tasks).

The computed orientation is demonstrated to be in accor-
dance with human perception in some standard cases. For ex-
ample, a computed orientation of a rectangle is coincident with
its longer edge. The computed orientation of shapes with one
symmetry axis is coincident with such an axis or it is orthogo-
nal to it, etc.

The method is very simple to implement and moreover, it
has been proven that such a defined shape orientation Onew(P )

can be computed from a simple formula

tan(2 · Onew(P )) =
∑n

i=1 |ei |2 sin(2�i )∑n
i=1 |ei |2 cos(2�i )

.

Comparing the above formula with Eq. (1) it can be said that
the new method is not more complicated then the standard one.

Due to shape diversity it is expected that there is not a sin-
gle method that works effectively in all situations. A simple
characterisation of polygonal shapes whose orientation cannot
be computed by the initial version of the method is given (see
Eq. (6)). M-fold rotationally symmetric shapes (M > 2) are ex-
amples of shapes that cannot be oriented in such a way.

In order to extend a class of shapes that can be oriented,
we have given a modification of the method. Instead of the
squared length of the projections of the edges of the shape
boundary we introduced a higher exponent. Precisely, we define
the orientation Onew,2N(P ) of a polygonal shape by a line that
maximises the total sum of the lengths of edge projections
taken with the power of 2N. In such a way, a suitable choice
of N can preserve a computable orientation of a higher class of
shapes, but again, if the exponent 2N is fixed, there will always
be shapes that cannot not be oriented. Such shapes are M-fold
(with M > 2N ) rotationally symmetric shapes, for example.
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Finally, we come to the shape orientation Omod(P ) that satis-
fies an additional, very important, requirement. A modification
of Onew(P ) was needed because of the requirement that in-
creasing the density of sample points from the shape boundary
should lead to the convergence of the computed orientations.
It has been shown that a slight modification of Onew(P ) was
enough to preserve such a requirement. Such a new defined ori-
entation Omod(P ) has an additional benefit. It is the following
simple equality:

tan(2 · Omod(C)) =

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt

that can be used for orientating shapes with curved boundaries
C given in a parametric form x = x(t), y = y(t), t ∈ [a, b].
The above formula can be applied for open curve arcs as well.
It is worth mentioning that in computer graphics and shape
modelling area such curves (given in a parametric form) appear
very often. But they could also appear in image processing tasks
where pixel-based shape boundaries are sometimes needed to
be approximated with parametric curved lines rather than by
polygonal lines.

This paper also provides a set of experiments that should il-
lustrate the proven statements and demonstrate how the method
works in practice.
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