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Abstract. The concept of elongation is generally well understood. However, 
there is no clear, precise, mathematical definition of elongation in any diction-
ary we could find. We propose that the definition of elongation should overlap 
with the definition of linearity since we will show that these two measures pro-
duce results that are highly correlated when applied to different types of 2D 
shapes. Our experiments consist of testing known methods of linearity and 
elongation on sets of closed shapes contours, shapes whose areas are filled, and 
shapes with open contours. We tested each algorithm on 25 different shapes in 
each category. It was found that the Average Orientations linearity measure 
from [10] best correlates to the elongation measures found in literature. It has a 
correlation value of above 0.9 with measures of elongation for open and closed 
curves. Also, we have discovered that the standard measure of elongation, ap-
plied to its intended area based shapes, gives almost identical results when it is 
applied to just the boundary pixels of the same area based shapes. They are over 
.98 correlated. This leads to a new linearity/elongation measure which is fast, 
applicable to both open and closed shapes, is given by a closed formula, and 
highly agrees with existing measures.  
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1   Introduction 

The elongation of an object is understood to be something that gives an idea of the 
length vs. the width of that object. The Webster’s dictionary definition of this term 
articulates that elongation is ‘the quality of being elongated’. A further search of the 
term ‘elongated’ gives ‘having notably more length than width’. This is hardly a con-
cise definition, so we present our own set of definitions to accurately define the term 
‘elongation’. Measuring elongation of a finite set of points in 2d space is equivalent to 
measuring the linearity of the same set. The linearity of a point set indicates how close 
this set is to a straight line. We have compared methods measuring linearity with 
methods of measuring elongation in literature, against the same test set. By correlating 
the results of both approaches, we were able to empirically show a strong correlation 
between the two ways of measuring what appears to be the same thing. Elonga-
tion/linearity is a useful tool in shape classification tasks in image processing, which is 
why we devote this article to studying it further.  
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In considering various linearity and elongation algorithms, we align ourselves with 
the following criteria. We are interested in those that assign values to sets of points in 
the range [0, 1]. They are equal to 1 if and only if the shape is perfectly linear or elon-
gated, and equals 0 when the shape is highly circular or has another form which is 
highly non-linear. A shape’s linearity and elongation value should be invariant under 
similarity transformations of the shape, such as scaling, rotation and translation. The 
algorithms should also be resistant to protrusions in the data set. Linearity and elonga-
tion values should also be computed by simple and fast algorithms.  

Elongation methods in literature typically yield results in the interval [1, ∞). These 
measures are transferred to the interval [0, 1] by the following calculation. If elonga-
tion value e in the range [1, ∞), then it is equal to 1-1/e in the range [0, 1]. 

It is important to stress that points in the sets we are considering are not ordered. 
This means that figures such as ellipses or rectangles which are very flat (long and 
thin) are considered to be highly linear, and therefore also highly elongated. If we were 
to consider ordered sets of points, such ellipses would be highly nonlinear. It is also 
impossible to select a consistent ordering of points in shapes which include large areas 
of pixels, such as filled circles. It is for this reason that we chose to apply both linearity 
and elongation methods to unordered point sets.  

Here, we consider 5 methods of finding linearity and 5 methods of finding elonga-
tion. The linearity algorithms are taken from [10]. Three of the elongation measures are 
taken from [11] and one from [12]. The fifth measure of elongation is the standard area 
based method proposed in [2]. The ‘eccentricity’ measure from [12] was actually at 
one point used as a linearity measure in [10]. Here it is once again considered an elon-
gation measure. The algorithms are sensitive to large extrusions in the curve but they 
mainly do not react to small ones which could be due to noise.  

There are many publications that deal with elongation: [2, 3, 4]. The standard meas-
ure of shape elongation is derived from the definition of shape orientation that is based 
on the axis of the least second moment of inertia. Precisely, the axis of the least second 
moment of inertia ([2, 3, 4]) is the line which minimizes the sum of the squares of 
distances of the points (belonging to the shape) to the line. 

The literature review is given in section 2. The test sets and comparison procedures 
are outlined in section 3. The results of the algorithms which were tested on various 
curves, are presented in section 4 along with a discussion of the results.  

2   Literature Review 

We will describe several well known functions on finite sets of points that are used in 
our linearity measures here. Existing linearity measures for unordered set will be cov-
ered along with other relevant measures.    

2.1   Linearity Measures for Unordered Sets 

The most relevant and applicable shape measure to our work is the measuring of line-
arity of unordered data sets. [10] is the only source in literature that deals directly with 
measuring linearity for unordered sets of points. Five linearity measures were proposed 
in [10], all of which we will use here. The average orientation (AO) scheme first finds 
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the orientation line of the set of points using moments. The method takes k pairs of 
points and finds the unit normals to the lines that they form. The unit normals all point 
in the same direction (along the normal to the orientation line). The average normal 
value (A, B) of all of the k pairs is found, and the linearity value is calculated 
as 22 BA + . Triangle heights (TH) takes an average value of the relative heights of 
triangles formed by taking random triplets of points. Relative heights are heights that 
are divided by the longest side of the triangle, then normalized so that we obtain a 
linearity value in the interval [0, 1]. Triangle perimeters (TP) takes the normalized, 
average value of the area divided by the square of the perimeter of triplets of points as 
its linearity measure. Contour smoothness (CS) was adapted from a measure of circu-
larity. It is a simple formula involving moments that were found in literature, and 
adapted to finding linearity [12]. The idea remained the same, but the resulting meas-
urements were interpreted differently. In the original scheme in [12], they proposed a 
measure of circularity by dividing the area of a shape by the square of its perimeter. 
For circles, they arrived at circularities of 1, and values of less than 1 for other objects. 
Ellipse axis ratio (EAR) is based on the minor/major axis ratio of the best ellipse that 
fits the set of points.  

2.2   Elongation Measures 

Eccentricity (E) was the simplest measure of elongation we could find. It was also used 
in [12]. The output of this algorithm is already in the interval [0, 1], so there was no 
need to normalize it. For a disc, this measure outputs 0, for a line, it outputs 1 since 
lines are eccentric. The formula is 
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The standard measure of shape elongation is derived from the definition of shape 
orientation that is based on the axis of the least second moment of inertia. The mini-
mum and maximum sums of projection edges for the shape are computed as follows: 
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The elongation of the given shape is defined as the max-to-min ratio (MMR), where MMR 
= max/min. The MMR is the standard measure of elongation of a given shape. Some 
generalization of the standard method for measuring shape elongation can be found in 
[13]. The standard measure (MMR) of shape elongation is area based because all pixels 
belonging to the shape are involved in the computation (area moments are used).  

Let P be a shape with a polygonal boundary. An elongation measure is defined in 
[11] as the ratio of the maximum and minimum value over candidate straight lines of 
the function  
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where ei (1 ≤ i ≤ n) are edges of the boundary of P, pra(e) is the projection of edge e 
along the line a, and αi (1 ≤ i ≤ n) are angles between the edges ei and the x-axis. Note 
that this measure is used for polygonal shapes only. However, it can be applied to 
arbitrary shapes by considering line segments between consecutive pixels as edges of a 
polygon.  

The elongation measure for polygon P [14] is the ratio of the maximum and mini-
mum value of  
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The final measure of shape elongation we consider here extends the polygonal elon-
gation measure to shapes with arbitrary boundaries. Assume that we have a piecewise 
smooth enough curve P given in a parametric form x = x(t), y = y(t), (t∈[a, b]). The 
elongation ZSC of the curve P is defined as [14]: 
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where dtdxx =&  and dtdyy =& . Note that the MMR, 11 and SZC measures are 

defined in the interval [1, ∞), and were converted to the interval [0, 1] before correlat-
ing them with the other measures.  

[14] have shown that the measure ZSC satisfies the “convergence property”. Pre-
cisely, let us assume we have a curve and a set of sample points from it. Also, let us 
assume that we have the computed elongation ZS of the polygonal curve P whose 
vertices are the selected sample points. Then, roughly speaking, by the convergence 
property of an elongation measure, the computed elongations ZS (of polygonal curves 
determined by sample points) should converge towards ZSC when the density of sam-
ple points increases and the largest distance between any two consecutive sample 
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points approaches zero. Naturally, if the convergence property holds, the limit value 
for the measured elongations ZS of polygonal lines determined by sample points is 
used as the elongation measure ZSC of the sampled curve. Our tables give the results 
of the ZS measure with edges composed of consecutive shape pixels, as an approxima-
tion for the ZSC measure of continuous curves.  

Let us mention that there are also some naive measures of elongation. For example, 
shape elongation can be measured as the ratio of the longer and shorter edges of the 
minimum area bounding rectangle for the measured shape. It is worth mentioning that 
such bounding rectangles are easy to compute [1, 5]. These measures are area based 
and are sensitive to protrusions. They were not included in the experimentation.  

3   Measuring Linearity and Elongation 

Here, we will describe the test methodology of the linearity and elongation measures 
and present the test sets of shapes. The test sets are shown below. Figure 1 shows the 
set of closed shape contours, most of which were taken from the test sets used in [6]. 
Figure 2 shows the area based curves test set which was mostly taken from [8]. Figure 
3 shows the open shape contours test set which was partly taken from [9].  There are 
23 closed shape contours, 25 area based shapes and 25 open shape contours. Each 
contour based shape has between 300 and 800 pixels. The area based shapes have 
roughly the same number of boundary pixels, but since their areas are also considered, 
their pixel count is significantly higher.  

It was discovered that all of the algorithms for linearity and elongation can be ap-
plied to each test set. The standard elongation measure is area based and thought to be 
only applicable to area based shapes. However, we have shown that even the standard 
MMR measure can be applied to boundary based shapes, by applying the same formula 
on just the boundary pixels rather than all of the pixels inside a shape. The new meas-
ure will be referred to as Standard Boundary (SB). 

 

Fig. 1. Closed shape contours Fig. 2. Area based shapes 
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Fig. 3. Open shape contours 

4   Experimental Data and Results 

Table 1 shows the linearity and elongation results for the closed shape contours seen in 
Figure 1.  

Table 1. Linearity and Elongation for 
Closed shape contours 

Table 2. Linearity and elongation for area based 
shapes 

AO TH TP CS EAR E SB SZ ZS 

1 .14 .13 .16 .11 .14 .14 .26 .18 .15 
2 .27 .13 .14 .12 .25 .28 .43 .06 .05 
3 .23 .17 .24 .13 .38 .45 .62 .14 .12 
4 .31 .19 .25 .16 .46 .55 .71 .27 .22 
5 .06 .08 .10 .06 .14 .15 .27 .08 .08 
6 .71 .53 .65 .45 .76 .89 .94 .64 .60 

7 .16 .01 .01 .01 .24 .26 .42 .44 .48 
8 .11 .07 .07 .06 .13 .14 .25 .04 .04 
9 .07 .05 .06 .03 .23 .26 .41 .22 .18 

10 .09 .03 .05 .02 .05 .05 .12 .27 .22 
11 .37 .12 .17 .10 .34 .40 .57 .56 .58 
12 .33 .16 .22 .12 .41 .49 .66 .32 .34 
13 .65 .41 .52 .34 .78 .91 .95 .68 .64 

14 .41 .29 .37 .23 .55 .66 .80 .41 .36 
15 .42 .18 .25 .14 .54 .64 .78 .34 .36 
16 .44 .21 .29 .16 .47 .56 .72 .62 .56 
17 .44 .20 .26 .16 .46 .55 .71 .36 .32 
18 .57 .38 .51 .30 .62 .75 .86 .51 .53 
19 .30 .10 .13 .09 .40 .47 .64 .39 .36 
20 .12 .01 .00 .01 .16 .17 .29 .22 .21 
21 .31 .16 .23 .12 .35 .41 .58 .29 .26 
22 .08 .04 .01 .04 .01 .01 .01 .78 .78 
23 .73 .66 .79 .59 .87 .97 .98 .76 .77 

AO TH TP CS EAR E MMR SB SZ ZS 

1 .39 .16 .21 .13 .51 .62 .85 .76 .68 .62 
2 .45 .28 .35 .25 .65 .78 .92 .88 .74 .76 
3 .60 .37 .46 .31 .72 .86 .96 .92 .77 .78 
4 .63 .38 .47 .32 .72 .86 .96 .92 .80 .80 
5 .08 .15 .19 .12 .00 .00 .00 .00 .01 .00 
6 .45 .19 .24 .16 .54 .65 .87 .79 .41 .36 

7 .54 .29 .37 .25 .64 .77 .92 .87 .19 .17 
8 .03 .10 .09 .10 .01 .01 .00 .02 .15 .13 
9 .40 .34 .44 .26 .55 .66 .85 .79 .40 .36 

10 .47 .29 .37 .24 .61 .74 .91 .85 .58 .61 
11 .39 .19 .27 .12 .53 .64 .86 .78 .34 .37 
12 .19 .10 .10 .10 .26 .29 .50 .45 .28 .29 
13 .25 .07 .10 .05 .33 .38 .57 .55 .62 .58 

14 .06 .02 .01 .04 .00 .00 .00 .00 .01 .01 
15 .09 .10 .14 .06 .01 .01 .00 .01 .05 .04 
16 .00 .08 .06 .07 .01 .01 .01 .02 .05 .04 
17 .71 .57 .73 .47 .71 .85 .93 .91 .62 .64 
18 .14 .08 .10 .05 .13 .14 .37 .24 .17 .15 
19 .11 .05 .07 .03 .11 .12 .25 .22 .17 .20 
20 .14 .09 .13 .06 .25 .28 .62 .44 .14 .17 
21 .79 .69 .80 .63 .87 .97 .99 .98 .84 .86 
22 .85 .74 .86 .67 .91 .98 .99 .99 .66 .71 
23 .39 .15 .23 .12 .51 .61 .61 .76 .55 .57 
24 .84 .63 .78 .55 .87 .97 .98 .98 .91 .93 
25 .04 .09 .12 .05 .00 .00 .00 .00 .01 .01  
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Table 2 shows the linearity and elongation results for the area based shapes seen in 
Figure 2. Table 3 shows the linearity and elongation results for the open shape contours 
seen in Figure 3. The first 5 columns of each of the three tables list the linearity results 
of each shape. They are: Average Orientations (AO), Triangle Heights (TH), Triangle 
Perimeters (TP), Contour Smoothness (CS), and Ellipse Axis Ratio (EAR). The Elon-
gation measures are listed in the last four columns, and they are: Eccentricity (E), the 
standard measure of elongation as referred to in [13] (MMR), our new measure stan-
dard boundary SB which is an elongation measure for just the boundary points of the 
area shapes as calculated by the same formula as MMR, the first method of elongation 
defined in [11] (SZ), and finally the convergent method of elongation as defined in 
[14] (ZS).  

In order to compare our results, we correlate the relevant columns in each table to 
see if elongation and linearity are related. In each table we see the linearity algorithms  
 

Table 3. Linearity and elongation for open shape contours 

  AO TH TP CS EAR E SB SZ ZS 

1 .85 .78 .93 .70 .80 .92 .96 .59 .65 

2 .70 .67 .81 .59 .80 .92 .96 .16 .14 

3 .53 .54 .70 .43 .61 .74 .85 .29 .32 

4 .50 .33 .40 .27 .57 .69 .82 .64 .70 

5 .09 .17 .19 .14 .21 .23 .31 .28 .30 

6 .05 .12 .15 .11 .16 .17 .30 .48 .41 

7 .38 .13 .21 .09 .40 .46 .64 .67 .65 

8 .07 .21 .25 .17 .25 .28 .44 .32 .37 

9 .00 .20 .26 .16 .23 .26 .40 .15 .16 

10 .19 .15 .19 .11 .44 .52 .68 .50 .54 

11 .46 .27 .34 .23 .56 .67 .82 .26 .23 

12 .25 .07 .07 .07 .17 .18 .33 .37 .40 

13 .53 .29 .39 .23 .67 .81 .89 .74 .79 

14 .62 .37 .52 .28 .68 .81 .90 .42 .37 

15 .38 .27 .35 .22 .57 .69 .82 .13 .13 

16 .39 .21 .30 .16 .53 .64 .77 .71 .76 

17 .50 .31 .41 .24 .65 .78 .88 .08 .08 

18 .48 .39 .53 .29 .60 .73 .84 .05 .06 

19 .04 .05 .03 .05 .07 .07 .16 .88 .86 

20 .21 .04 .08 .04 .32 .37 .54 .65 .65 

21 .79 .73 .84 .67 .87 .97 .98 .72 .76 

22 .84 .73 .84 .66 .90 .98 .99 .86 .89 

23 .07 .13 .16 .12 .27 .31 .46 .44 .47 

24 .18 .02 .03 .02 .25 .28 .43 .15 .16 

25 .45 .22 .29 .18 .56 .67 .80 .34 .36 
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listed as the columns and the elongation measures listed as the rows. Each cell repre-
sents the correlation value between the measures of the corresponding linearity and 
elongation for a set of curves.  

Table 4 shows the correlation values for the area based shapes seen in Figure 2. 
Here we see that the correlation values are all very high in each cell. The AO and EAR 
methods best correlate to the elongation schemes of E, MMR, and SB. We notice that 
the MMR and SB methods have nearly identical correlation values with each of the 
linearity measures in Table 4. We further examine the relationship between the MMR 
elongation measure for area and boundary shapes by correlating their results. It was 
found that these two measures have a correlation factor of .989. This is strong evidence 
that the area based measure, and the moment functions that it relies on can be used on 
boundary shapes as well. For this reason, the MMR measure was also compared to the 
open and closed shapes in Figures 1 and 3.  

Table 4. Correlations for area based shapes 

 AO TH TP CS EAR 

E 0.966 0.826 0.853 0.810 0.998 

MMR 0.898 0.728 0.761 0.707 0.961 

SB 0.924 0.743 0.777 0.724 0.980 

Table 5 shows the correlation results of the linearity and elongation measures on 
open and closed curves from Figures 1 and 3. We immediately notice that the correla-
tion values are quite high for the Eccentricity and MMR elongation measures com-
pared to all of the linearity measures for both open and closed shapes. The SZ and ZS 
measures for closed curves are not correlated as highly to the linearity values for closed 
shapes, and it are not correlated at all with the linearity values for open shapes.   

Table 5. Correlations for open and closed curves 

  AO TH TP CS EAR 

Closed E 0.960 0.898 0.921 0.875 0.998 

 SZ 0.638 0.574 0.557 0.584 0.549 

 ZS 0.621 0.552 0.533 0.563 0.529 

 SB 0.920 0.819 0.854 0.790 0.976 

Open E 0.946 0.842 0.874 0.813 0.996 

 SZ 0.186 0.097 0.066 0.139 0.098 

 ZS 0.199 0.121 0.088 0.162 0.119 

 SB 0.907 0.779 0.820 0.742 0.978 

The reason for such low correlation values between the linearity measures and the 
elongation of open shapes as calculated by SZ and ZS lies in the way elongation is 
calculated in for these measures. Consider Figure 4 for clarification. There we see three 
shapes that would have the same elongation value according to the non convergent 
definition of elongation defined in [11]. This happens since their elongation definition 
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is the ratio of horizontal and vertical edges projected onto the x and y axes. We see that 
since the shapes a, b, and c in Figure 4 have the same ratio of horizontal and vertical 
edges, their elongation value would also be the same. Shapes 4, 5, 6, 7, 9, 10, 11, 16, 
17, 18, 19, 20 and 23 in Figure 3 all exhibit properties such as those seen in Figure 4. 
Their elongation values as calculated by SZ and ZS are consequently much lower than 
they should be, and therefore when the set of results is correlated with the linearity 
measures, no direct link can be seen. This is not a reflection of a non existent link be-
tween elongation and linearity, it is a testament of situations where the elongation 
measure of [11, 14] does not perform adequately.  

 
Fig. 4. Three shapes having the same elongation according to [11] 

A two tailed, paired t test of the MMR and SB measures on the area based shape set 
yields a value of 0.0161. Their mean difference of measures is 0.03096, which means 
that on average, the measures produce results which vary by 3%. A confidence interval 
of 95% specifies that the measures will produce values that will differ in the range 
[0.00627, 0.05565].  

5   Conclusion 

We have seen that the measures of elongation and linearity are highly correlated on 
various sets of data. This can lead us to conclude that these measures are relatively 
interchangeable, if not completely equivalent. Further experimentation should be done 
on real world data that actively interchanges these measures in order to be able to bet-
ter support our assertions. We have also concluded that the MMR measure can be 
applied equally to area and shape based figures. This leads us to believe that calcula-
tions involving moments of inertia are not strictly limited to area based shapes. A for-
mal proof is missing for this claim, and is left as future work.  
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