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Abstract. Shape elongation is one of the basic shape descriptors that
has a very clear intuitive meaning. That is reason for its applicability in
many shape classification tasks. In this paper we define a new method for
computing shape elongation for shapes with polygonal boundaries. The
measure is the ratio of the maximal and minimal of the sums of squared
lengths of the projections of all of the edges of the polygonal boundary
onto a line which has a particular slope. We express the measure with
a closed formula. This measure finds the elongation for shapes whose
boundary is not extracted completely, which is impossible to achieve
with existing area based measures.
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1 Introduction

This paper introduces a new shape elongation measure. Elongation has an intu-
itively clear meaning and is hence a very common shape descriptor. In literature,
shape orientation and shape elongation are strongly connected, and usually con-
sidered together ([2,3,4]). The standard measure of shape elongation is derived
from the definition of shape orientation that is based on the axis of the least sec-
ond moment of inertia. Precisely, the axis of the least second moment ([2,3,4])
is the line which minimises the integral of the squares of distances of the points
(belonging to the shape) to the line. The integral is

I(S, ϕ, ρ) =
∫

S

∫
r2(x, y, ϕ, ρ)dxdy (1)

where r(x, y, ϕ, ρ) is the perpendicular distance from the point (x, y) to the line
given in the form

x · cosϕ − y · sin ϕ = ρ.
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The angle ϕ for which the above integral reaches a minimum defines the orien-
tation of the shape S. This angle is easy to compute and it can be shown that
such an angle ϕ satisfies the following equation:

sin(2ϕ)
cos(2ϕ)

=
2 · m1,1(S)

m2,0(S) − m0,2(S)
, (2)

where mp,q(S) are centralised moments of the shape S defined as

mp,q(S) =
∫

S

∫ (
x −

∫∫
S xdxdy∫∫
S

dxdy

)p

·
(

y −
∫∫

S ydxdy∫∫
S

dxdy

)q

dx dy. (3)

The minimum and maximum of I(S, ϕ, ρ) are also easy to compute. They are:

max
ρ≥0

ϕ∈[0,2π]

{I(S, ϕ, ρ)} =

m2,0(S) + m0,2(S) +
√

4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

2

and

min
ρ≥0

ϕ∈[0,2π]

{I(S, ϕ, ρ)} =

m2,0(S) + m0,2(S) −
√

4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

2
.

Next, the ratio between max
ϕ∈[0,π)

I(S, ϕ, ρ) and min
ϕ∈[0,π)

I(S, ϕ, ρ)

Es(S) =
max{I(S, ϕ, ρ) | ϕ ∈ [0, 2 · π], ρ ≥ 0}
min{I(S, ϕ, ρ) | ϕ ∈ [0, 2 · π], ρ ≥ 0} (4)

is the standard measure of elongation of the shape S. Some generalisation of
the standard method for measuring shape elongation can be found in [8]. Let
us mention that there are also some naive measures of elongation. For example,
shape elongation can be measured as the ratio of the longer and shorter edges
of the minimum area bounding rectangle for the measured shape. It is worth
mentioning that such bounding rectangles are easy to compute ([1,5]).

The standard measure (4) of shape elongation is area based because all points
belonging to the shape are involved in the computation (area moments are used).
Our new shape elongation measure is boundary based, because only the bound-
ary points are used in its computation. In this paper we will use the above given
idea while considering a recently disclosed method [9] for computing shape ori-
entation for deriving the new measure for shape elongation.

The restriction to polygonal shapes is not strictly enforced since real image
processing applications deal with discrete data that are a result of a particular
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discretization process. In order to enhance the data manipulation, the bound-
aries of the original shapes are usually approximated with canonical arc sec-
tions (circular arcs, parabolic arcs, straight line segments, etc.). Approximating
boundaries by straight line sections (i.e., polygonal approximation) is used most
frequently and many algorithms for the polygonal shape approximation already
exist – see [6].

The new elongation measure defined in this paper takes into account all the
boundary points – not only those that belong to the convex hull or to bounding
rectangles of the shape, for example.

2 Boundary Based Shape Orientation

As mentioned, we will derive a new shape elongation measure from a recent
boundary based method for computing the orientation of polygonal shapes. We
will first give a short sketch of the main result from [9]. Let us start with the
following definition from the same paper.

Definition 1. Let P be a planar shape with a polygonal boundary, and let −→a =
(cosα, sin α) denotes the unit vector with direction α. Then, the orientation of
the shape is defined by the angle α such that the total sum

F (α, P ) =
∑

e is an edge of P

|pr−→a (e)|2 (5)

of squared lengths of projections of all the edges of P onto a line having the slope
α is maximal possible.

Since the length of the projection pr−→a (ei) of the edge ei onto a line having the
slope α is

|pr−→a (ei)| = |ei||(cosαi cosα + sin αi sin α)| = |ei|| cos(αi − α)|,

the function F (α, P ) that should be maximised (in order to compute the orien-
tation of P ) can be expressed as

F (α, P ) =
n∑

i=1

|pr−→a (ei)|2 =
n∑

i=1

|ei|2 cos2(αi − α). (6)

By setting the first derivative dF (α, P )/dα equal to zero it can be shown that
both angles for which F (α, P ) reaches its minimum and maximum satisfy

sin(2α)
cos(2α)

=

n∑
i=1

|ei|2 sin(2αi)

n∑
i=1

|ei|2 cos(2αi)
. (7)

Once again, for a detailed proof and more details we refer to [9].
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3 New Shape Elongation Measure for Polygonal Shapes

Following the idea of the standard method for measuring shape elongation we
define the new elongation measure as the ratio of the maximum and minimum
value of the function that has been used for computing the shape orientation.

Definition 2. Let P be a shape with a polygonal boundary. Then, the elongation
of P is defined as the ratio

E(P ) =
max{F (α, P ) | α ∈ [0, 2 · π]}
min{F (α, P ) | α ∈ [0, 2 · π]} (8)

of the maximum and minimum of the function F (α, P ).

The new definition seems well motivated. For practical applications it would
be a desirable property if E(P ) is easily computable. We will show that the
computation is straight forward, and more over it turns up that there is a closed
formula for computing shape elongation as defined by (8).

Theorem 1. Let P be a shape with a polygonal boundary. Then the new elon-
gation measure of P can be expressed as

E(P ) =

∑
1≤i≤n

|ei|2 +

√√√√
( ∑

1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 · sin(2αi)

)2

∑
1≤i≤n

|ei|2 −

√√√√
( ∑

1≤i≤n

|ei|2 · cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 · sin(2αi)

)2

(9)
where ei (1 ≤ i ≤ n) are edges of the boundary of P and αi (1 ≤ i ≤ n) are
angles between the edges ei and the x-axis.

Proof. By using a simple trigonometric identity cos2(α) =
1 + cos 2α

2
we can

transform the optimising function F (α, P ) from the form (6) into:

F (α, P ) =

1
2

·
∑

1≤i≤n

|ei|2 +
1
2

·
∑

1≤i≤n

|ei|2(cos(2αi) cos(2α) + sin(2αi) sin(2α)). (10)

As already proved (see (7)), the angle values γ for which F (α, P ) reaches its

minimum and maximum satisfy
sin(2γ)
cos(2γ)

=

n∑
i=1

|ei|2 sin(2αi)

n∑
i=1

|ei|2 cos(2αi)
. Now, using the

trigonometric identities: sin(2ϕ)=
± tan(2ϕ)√
1 + tan2(2ϕ)

and cos(2ϕ)=
±1√

1 + tan2(2ϕ)
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we derive that cos(2γ) and sin(2γ) at the extreme points of F (α, P ) can be
expressed (together) as

cos(2γ) =
±

∑
1≤i≤n

|ei|2 cos(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

sin(2γ) =
±

∑
1≤i≤n

|ei|2 sin(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2
.

Entering the last two equalities into (10) we derive that the minimum and max-
imum of F (α, P ) can be expressed as

1
2

∑
1≤i≤n

|ei|2 +
1
2

∑
1≤i≤n

|ei|2 ·
±cos(2αi) ·

∑
1≤i≤n

|ei| 2cos(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

+
1
2

∑
1≤i≤n

|ei|2 ·
± sin(2αi) ·

∑
1≤i≤n

|ei|2 sin(2αi)
√√√√

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

or equivalently as

1
2

·
∑

1≤i≤n

|ei|2 ± 1
2

·

( ∑
1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2

√√√√
( ∑

1≤i≤n

|ei|2 cos(2αi)

)2

+

( ∑
1≤i≤n

|ei|2 sin(2αi)

)2
.

Thus, we derived that the maximum and minimum of F (α, P ) are as follows:

max{F (α, P ) | α ∈ [0, 2π]} =

1
2

·
∑

1≤i≤n

|ei|2 +
1
2

·

√√√√√
⎛
⎝ ∑

1≤i≤n

|ei|2 · cos(2αi)

⎞
⎠

2

+

⎛
⎝ ∑

1≤i≤n

|ei|2 · sin(2αi)

⎞
⎠

2
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and

min{F (α, P ) | α ∈ [0, 2π]} =

1
2

·
∑

1≤i≤n

|ei|2 − 1
2

·

√√√√√
⎛
⎝ ∑

1≤i≤n

|ei|2 · cos(2αi)

⎞
⎠

2

+

⎛
⎝ ∑

1≤i≤n

|ei|2 · sin(2αi)

⎞
⎠

2

.

This establishes the proof. �
Lemma 1 considers two properties that encompass the new elongation mea-

sure. The proof is omitted because it follows directly from the definitions.

Lemma 1. The new elongation measure satisfies the following properties:

– E(P ) ∈ [1, ∞) for each polygonal shape P ;
– E(P ) is invariant with respect to similarity transformations.

Remark. It is worth mentioning that the new elongation measure is valid for
both open and closed polygons, as it considers the boundary of the polygo-
nal shape. It can be applied to open polygonal lines, but also to the set of
several polygonal lines. This enables the method to be applicable to shapes
whose boundaries are not completely extracted. The reasons for an incomplete
extracted boundary could be: the shape is partially overlaid, there are large
similarities between background pixels and pixels belonging to the shape, etc.

4 Experiments

In the previous section we proposed a new shape elongation measure. It is nat-
urally motivated and simple to compute. There is a closed formula (9) that
expresses the elongation of a given polygonal shape as a function of the bound-
ary edges and angles that those edges made with the x-axis. It performs well in
some canonical cases. For example, let us consider a rectangle T (a) having edge
lengths a and 1. In accordance with (9) its measured elongation is

E(T (a)) =
1 + a2 +

√
(a2 − 1)2

1 + a2 −
√

(a2 − 1)2
=

⎧⎨
⎩

a2 if a > 1
1 if a = 1

1/a2 if a < 1

which is acceptable. In the limit cases where a → ∞ and a → 0 the rectangle
degenerates into a line segment while the measured elongations tend to infinity.
This behaviour is expected, and in fact preferred. In the case of a = 1 the
measured elongation is equal to 1. In this case the rectangle degenerates into a
square which is a 4-fold rotationally symmetric shape. Problems arising when
working with manyfold rotationally symmetric shapes are discussed in [7,8].

Next we give several shapes with their measured elongations. The new measure
E is boundary based and it is more sensitive to noise or to boundary defects (e.g.
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5.1173
(2.1218)

2.9167
(2.3975)

2.5274
(2.1093)

1.6553
(1.0604)

3.2768
(1.9653)

2.5775
(2.558)

Fig. 1. Computed elongations by the new method. Elongations computed by the stan-
dard method are in brackets.

4.7473 1.3609 4.3489

2.3787 2.762 1.3162

Fig. 2. Computed elongations of polygonal lines by the new method

intrusions on the boundary) than the standard measure Es. That is illustrated
by the first two examples from Fig.1. There is an essential difference between the
measured elongations if the new measure E is used. On the other hand, there is
only a small difference if those shapes are measured by the standard elongation
measure Es. Such “sensitivity” is not necessarily a disadvantage – particularly
when working in high precision (inspection) tasks.

The last two shapes in Fig.1 illustrate how shape deformations could affect
the measured elongation. In those examples the rankings given by E and Es are
different.
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An advantage of the method is that it can be applied to shapes whose bound-
ary consists of several polygonal lines (see the fourth shape in Fig.1.) or to
shapes with missing parts on their boundaries (see the last example on Fig.2).
The fourth shape in Fig.1 presents a square with a triangular hole. It has a
measured elongation Es very close to one. It is not surprising, because results
from [7,8] imply that all N -fold rotationally symmetric shapes (if N > 2) have
the same, minimal possible, measured elongation which is equal to 1. Since the
percentage of pixels that correspond to the triangular hole is relatively small, it
does not lead to an essential change in the measured elongation Es. If the new
measure E is applied then the impact of the hole is more significant. That can
be understood as a desirable property.

Several shapes that are presented usually by a curved line (or several of them)
are given in Fig.2.

5 Conclusion

The traditional shape elongation measure is area based. It is therefore defined
only for closed shapes. In this article, we proposed a shape boundary based
measure, with a closed formula. Using our new method, elongation can be mea-
sured for any open shape, including shapes composed of several components.
The measure is invariant with respect to rotation, translation and scaling.
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