
J Math Imaging Vis (2008) 30: 73–85
DOI 10.1007/s10851-007-0039-0

Measuring Elongation from Shape Boundary

Miloš Stojmenović · Joviša Žunić
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Abstract Shape elongation is one of the basic shape de-
scriptors that has a very clear intuitive meaning. That is
the reason for its applicability in many shape classification
tasks. In this paper we define a new method for computing
shape elongation. The new measure is boundary based and
uses all the boundary points. We start with shapes having
polygonal boundaries. After that we extend the method to
shapes with arbitrary boundaries. The new elongation mea-
sure converges when the assigned polygonal approximation
converges toward a shape. We express the measure with
closed formulas in both cases: for polygonal shapes and for
arbitrary shapes. The new measure finds the elongation for
shapes whose boundary is not extracted completely, which
is impossible to achieve with area based measures.

Keywords Shape · Elongation · Orientation · Image
processing · Computer vision · Early vision

1 Introduction

Shape descriptors are widely used in many image process-
ing tasks. The demand for more efficient shape classification
procedures is the reason for a permanent interest for newly
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created shape descriptors but also for new methods for mea-
suring already created shape descriptors. The shape convex-
ity is an example of shape descriptors with probably most
different methods for its evaluation [2, 8, 11, 15, 21]. Most
standard shape descriptors as they are compactness [17] and
elongations are computable by closed formulas, but some-
times closed formulas are not possible and particular algo-
rithms have to be created to evaluate defined shape descrip-
tors [14]. If created algorithms do not have a low time com-
plexity, then statistical methods for describing shapes could
be involved [1, 11], as well.

In this paper we are focused on shape elongation prob-
lems. A new shape elongation measure will be introduced.
Elongation has an intuitively clear meaning and is hence
a very common shape descriptor. The standard measure of
shape elongation is derived from the definition of shape ori-
entation which is based on the axis of the last second mo-
ment of inertia. Precisely, the axis of the least second mo-
ment of inertia [6, 7, 9] is the line which minimizes the in-
tegral of the squares of distances of the points (belonging to
the shape) to the line. The integral is defined as

I (S,ϕ,ρ) =
∫∫

S

r2(x, y,ϕ,ρ)dxdy (1)

where r(x, y,ϕ,ρ) is the perpendicular distance from the
point (x, y) to the line given in the form

x · sinϕ − y · cosϕ = ρ.

The angle ϕ for which the integral I (S,ϕ,ρ) reaches a min-
imum defines the orientation of the shape S. This angle is
easy to compute. Elementary mathematics says that such an
angle ϕ satisfies the following equation:

sin(2ϕ)

cos(2ϕ)
= 2 · m1,1(S)

m2,0(S) − m0,2(S)
, (2)
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where mp,q(S) are centralized moments of S defined as

mp,q(S) =
∫∫

S

(
x −

∫∫
S
xdxdy∫∫

S
dxdy

)p

·
(

y −
∫∫

S
ydxdy∫∫

S
dxdy

)q

dxdy. (3)

The minimum of I (S,ϕ,ρ) is easy to compute:

min
ρ≥0

ϕ∈[0,2π]
{I (S,ϕ,ρ)} = m2,0(S) + m0,2(S) − √

4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

2
.

Notice that the minimum does not depend on ρ. This is in accordance with the fact that if I (S,ϕ,ρ) reaches the minimum
then ρ = 0—i.e. the axis of least second moment of inertia passes the origin.

If ρ = 0 is assumed then

max
ϕ∈[0,2π]

{I (S,ϕ,ρ = 0)} = m2,0(S) + m0,2(S) + √
4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

2
.

Next, the ratio between the extreme values maxϕ∈[0,π) I (S,ϕ,ρ = 0) and minϕ∈[0,π) I (S,ϕ,ρ = 0)

Estandard(S) = m2,0(S) + m0,2(S) + √
4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

m2,0(S) + m0,2(S) − √
4 · (m1,1(S))2 + (m2,0(S) − m0,2(S))2

. (4)

is the standard measure (i.e. most quoted in literature) of
elongation of the shape S. Some generalization of the stan-
dard method for measuring shape elongation can be found
in [19]. Let us mention that there are also some naive mea-
sures of elongation. For example, shape elongation can be
measured as the ratio of the longer and shorter edges of the
minimum area bounding rectangle for the measured shape. It
is worth mentioning that such bounding rectangles are easy
to compute [5, 10].

The standard measure (4) of shape elongation is area
based because all points belonging to the shape are involved
in the computation (area moments are used). Our new shape
elongation measure is boundary based. Only the boundary
points are used for computation and consequently, the mea-
sure strongly depends on boundary defects, caused by noise
or narrow shapes intrusions, for example. On the other hand,
as a sensitive measure, the new measure could be more suit-
able for high precision tasks, for high quality images, or if
working whit shapes whose inherent characteristics are deep
intrusions and their positions inside shape.

In this paper we will use this standard approach “from-
orientation-to-elongation” along with a recently disclosed
method for computing shape orientation [20, 22] to derive
the new measure for shape elongation.

The paper is organized as follows. A short overview of
the recently derived method for shape orientation compu-
tation [20, 22] is given in Sect. 2. Section 3 gives the new
elongation measure for shapes with polygonal boundaries.
In Sect. 4 we extend the method to shapes with arbitrary

boundaries. Experimental results and illustrations are given
in Sect. 5, while Sect. 6 gives concluding remarks.

2 Boundary Based Shape Orientation

As mentioned, we will derive a new shape elongation mea-
sure from a recent [22] boundary based method for comput-
ing the orientation of polygonal shapes. We will first give
a short sketch of the main result from [22]. Let P be a
polygon and let |pr�a(e)| denote the length of the projec-
tion of the edge e of P onto a line parallel to the vector
�a = (cosα, sinα). Then, roughly speaking, the authors of
[22] consider a variety of functions

Fp,q(α,P ) =
∑

e is an edge ofP

|pr�a(e)|p
|e|q

and define the orientation of P by the angle for which
Fp,q(α,P ) reaches the maximum.

The choice of exponents p and q depends on the re-
quired purpose of the formula. If p = 2 and q = 0, i.e.,
F2,0(α,P ) = ∑

e is an edge ofP |pr�a(e)|2, the orientation is de-
fined by the angle α that maximizes the sum of the squared
lengths of the projections of all the edges of P onto a line
having slope α.

However, F2,0(α,P ) does not satisfy the “convergence”
property. A recent article ([16]) proposed an elongation
measure for polygons based on F2,0(α,P ). Since the un-
derlying orientation calculation did not converge, the elon-
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gation measure did not converge either. This article devel-
ops an alternative elongation measure based on F2,1(α,P )

and proves its convergence. More precisely, let a polygo-
nal curve be represented in parametric form as x = x(t),
y = y(t), for t ∈ [a, b]. Let a sequence t1 = a < t2 < · · · <

tk−1 < tk = b and let P(t1, . . . , tk) be a polygonal line
(not necessarily open) whose vertices are (x(t1), y(t1)) =
(x(a), y(a)), (x(t2), y(t2)), . . . , (x(tk−1), y(tk−1)), (x(tk),

y(tk)) = (x(b), y(b)). Then the “convergence” property
would mean that for an increasing k and an arbitrary choice
of the sequence t1 = a < t2 < · · · < tk−1 < tk = b such
that the maximum distance between the consecutive points
(x(ti), y(ti)) and (x(ti+1), y(ti+1)), (1 ≤ i < k − 1) tends
to zero, the computed orientations of the polygonal lines
P(t1, . . . , tk) converge to the same value. A big disadvan-
tage (particularly when working with shapes with ‘smooth
curved’ boundaries) is that the shape orientation defined by
the maxima of F2,0(α,S) does not have such a convergence
property. On the other hand, convergence is guaranteed for
F2,1(α,P ) (as proven in [22]).

The paper [22] gives a preference to the method based
on the use of F2,1(α,P ) when the orientation is computed.
There are two strong reasons for this:

– a closed formula for the computation of the orientation of
P is enabled;

– such a computed orientation satisfies the convergence
property.

So, in the rest of this paper, we will derive a new elongation
measure considering the function F2,1(α,P ).

Next, we will show how shape orientation can be com-
puted based on F2,1(α,P ). We start with a formal definition.

Definition 2.1 Let P be a planar shape with a polygonal
boundary, and let −→

a = (cosα, sinα) denote the unit vector
with direction α. Then, the orientation of the shape is de-
fined by the angle α such that the total sum

F2,1(α,P ) =
∑

e is an edge ofP

|pr−→
a (e)|2
|e| (5)

is maximal possible.

Notice that the summands in (5) are squared lengths of pro-
jections of the edges of P (onto a line having slope α) di-
vided by the edge lengths.

Because the length of the projection pr−→
a (ei) of the edge

ei onto a line having slope α is

|pr−→
a (ei)| = |ei | · |(cosαi cosα + sinαi sinα)|

= |ei || cos(αi − α)|,

the function F2,1(α,P ) can be expressed as

F2,1(α,P ) =
n∑

i=1

|pr−→
a (ei)|2
|ei | =

n∑
i=1

|ei | cos2(αi − a). (6)

By setting the first derivative dF2,1(α,P )/dα equal to
zero

dF2,1(α,P )

dα

=
n∑

i=1

|ei | · sin(2αi − 2α)

=
n∑

i=1

|ei | · (sin(2αi) cos(2α) − cos(2αi) sin(2α))

= 0 (7)

we derive that both angles for which F2,1(α,P ) reaches its
minimum and maximum satisfy

sin(2α)

cos(2α)
=

∑n
i=1 |ei | sin(2αi)∑n
i=1 |ei | cos(2αi)

. (8)

Thus, the orientation of a given polygonal shape P is very
easy to compute in accordance with the equality (8). In
the next section we compute both maxima and minima of
F2,1(α,P ) and use their ratio as a new elongation measure.

Remark 2.1 In the case of a very fine polygonal approxima-
tion of a real curve the edges from this approximation are
expected to be very short. But as small edge lengths are as-
sumed, i.e. even if max |e| → 0 we do not have the ‘dividing
by zero’ problem in (5). That is obvious from (6), which is
actually equivalent to (5). Under the same assumption (i.e.
max |e| → 0) both maxF2,1(α,P ) and minF2,1(α,P ) tend
to zero. But for a fixed P angles for which F(α,P ) reaches
the minimum and maximum are still well defined, indepen-
dently of max |e|. In the rest of paper we will consider the
ratio between maxF2,1(α,P ) and minF2,1(α,P ), and will
show that this ratio converges, providing that all the vertices
of P belong to a piecevise smooth curve and max |e| → 0.

3 New Shape Elongation Measure for Polygonal Shapes

In this section we consider the elongation of shapes having
polygonal boundaries. Let us mention that, generally speak-
ing, the restriction to polygonal shapes is not strictly en-
forced since real image processing applications deal with
discrete data that are a result of a particular discretiza-
tion process. In order to enhance the data manipulation,
the boundaries of the original shapes are usually approxi-
mated with canonical arc sections (circular arcs, parabolic
arcs, straight line segments, etc.). Approximating bound-
aries by straight line sections (i.e., polygonal approxima-
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tion) is used most frequently and many algorithms for the
polygonal shape approximation already exist—see [13].

Following the idea of the standard method for measuring
shape elongation we define the new elongation measure as
the ratio of the maximum and minimum value of the func-
tion that has been used for computing the shape orientation.
We give the following definition.

Definition 3.1 Let P be a shape with a polygonal boundary.
Then, the elongation of P is defined as the ratio

E(P ) = max{F2,1(α,P ) | ϕ ∈ [0,2π]}
min{F2,1(α,P ) | ϕ ∈ [0,2π]} (9)

of the maximum and minimum of the function F2,1(α,P ).

For practical applications it would be a desirable property
if E(P ) is easily computable. The next theorem shows that
the computation is simple, and more over it turns out that
there is a closed formula for the computing shape elongation
as defined by (8) from Definition 3.1.

Theorem 3.1 Let P be a shape with a polygonal boundary. Then the new elongation measure of P can be expressed as

E(P ) =
∑

1≤i≤n |ei | +
√

(
∑

1≤i≤n |ei | cos(2αi))2 + (
∑

1≤i≤n |ei | · sin(2αi))2

∑
1≤i≤n |ei | −

√
(
∑

1≤i≤n |ei | · cos(2αi))2 + (
∑

1≤i≤n |ei | · sin(2αi))2
(10)

where ei (1 ≤ i ≤ n) are edges of the boundary of P and αi (1 ≤ i ≤ n) are angles between the edges ei and the x-axis.

Proof By using a simple trigonometric identity cos2(α) = 1+cos 2α
2 we can transform the optimizing function F2,1(α,P )

from the form (6) into:

F2,1(α,P ) = 1

2
·

∑
1≤i≤n

|ei | + 1

2
·

∑
1≤i≤n

|ei |(cos(2αi) cos(2α) + sin(2αi) sin(2α)). (11)

As already proved (see (8)), the angle values γ for which F2,1(α,P ) reaches its minimum and maximum satisfy

sin(2γ )

cos(2γ )
=

∑n
i=1 |ei | sin(2αi)∑n
i=1 |ei | cos(2αi)

.

Now, using the trigonometric identities:

sin(2ϕ) = ± tan(2ϕ)√
1 + tan2(2ϕ)

and cos(2ϕ) = ±1√
1 + tan2(2ϕ)

we derive that cos(2γ ) and sin(2γ ) at the extreme points of F2,1(α,P ) can be expressed (together) as

cos(2γ ) = ±∑
1≤i≤n |ei | cos(2αi)√

(
∑

1≤i≤n |ei | cos(2αi))2 + (
∑

1≤i≤n |ei | sin(2αi))2

and

sin(2γ ) = ±∑
1≤i≤n |ei | sin(2αi)√

(
∑

1≤i≤n |ei | cos(2αi))2 + (
∑

1≤i≤n |ei | sin(2αi))2
.

Entering the last two equalities into (11) we derive that the minimum and maximum of F2,1(α,P ) can be expressed as
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1

2

∑
1≤i≤n

|ei | + 1

2
·

∑
1≤i≤n

|ei | ·
± cos(2αi) · ∑1≤i≤n |ei | cos(2αi)√

(
∑

1≤i≤n |ei | cos(2αi))2 + (
∑

1≤i≤n |ei | sin(2αi))2

+ 1

2
·

∑
1≤i≤n

|ei | ·
± sin(2αi) · ∑1≤i≤n |ei | sin(2αi)√

(
∑

1≤i≤n |ei | cos(2αi))2 + (
∑

1≤i≤n |ei | sin(2αi))2

or equivalently as

1

2
·

∑
1≤i≤n

|ei | ± 1

2
· (

∑
1≤i≤n |ei | cos(2αi))

2 + (
∑

1≤i≤n |ei | sin(2αi))
2

√
(
∑

1≤i≤n |ei | cos(2αi))2 + (
∑

1≤i≤n |ei | sin(2αi))2
.

Thus, we derived that the maximum and minimum of F2,1(α,P ) are as follows:

max{F2,1(α,P ) | ϕ ∈ [0,2π]} = 1

2
·

∑
1≤i≤n

|ei | + 1

2
·

√√√√√
( ∑

1≤i≤n

|ei | · cos(2αi)

)2

+
( ∑

1≤i≤n

|ei | · sin(2αi)

)2

min{F2,1(α,P ) | ϕ ∈ [0,2π]} = 1

2
·

∑
1≤i≤n

|ei | − 1

2
·

√√√√√
( ∑

1≤i≤n

|ei | · cos(2αi)

)2

+
( ∑

1≤i≤n

|ei | · sin(2αi)

)2

. (12)

This establishes the proof. �

Theorem 3.1 (i.e. the equality (10)) shows that the new
elongation measure is easy to compute. Lemma 3.1 lists two
more properties that encompass the new elongation mea-
sure. The proof is omitted because it follows directly from
the definitions.

Lemma 3.1 The new elongation measure satisfies the fol-
lowing properties:

(i) E(P ) ∈ [1,∞) for each polygonal shape P ;
(ii) E(P ) is invariant with respect to similarity transforma-

tions.

Notice that E(P ) is not given in a normalized form, i.e.,
as a quantity from the interval [0,1] (see the item (i) of
Lemma 3.1). We will not use a normalization procedure in
order to be able to compare our results to the standard elon-
gation measure that is also not normalized and has the range
from 1 to infinity.

Remark 3.1 It is worth mentioning that the new elongation
measure is valid for both open and closed polygonal lines.
Also, it can be applied to a set of several polygonal lines.
This enables the method to be applicable to shapes whose
boundaries are not completely extracted—see Fig. 3. The
reasons for an incompletely extracted boundary could be:
the shape is partially overlaid, there are large similarities be-
tween background pixels and pixels belonging to the shape,
etc.

4 Experimental Results

In the previous section we proposed a new shape elonga-
tion measure for polygonal shapes. The measure is naturally
motivated and simple to compute. There is a closed formula
(10) that expresses the elongation of a given polygonal shape
as a function of the boundary edges and angles that those
edges make with the x-axis. It performs well in some stan-
dard cases. For example, let us consider a rectangle R(a)

having edge lengths a and 1. In accordance with (10) its
measured elongation is

E(R(a)) = 1 + a + √
(a − 1)2

1 + a − √
(a − 1)2

=
⎧⎨
⎩

a if a > 1,

1 if a = 1,

1/a if a < 1

which is acceptable. In the limit cases where either a → ∞
or a → 0 the rectangle degenerates into a line segment while
the measured elongations tend to infinity. This behavior is
expected, and in fact preferred. In the case of a = 1 the
measured elongation is equal to 1. In this case the rectangle
degenerates into a square which is a 4-fold rotationally sym-
metric shape. Problems arising when working with manifold
rotationally symmetric shapes are discussed in [18, 19].

Next, we give several shapes with their measured elonga-
tions.

In Fig. 1 boundaries of 10 fish images are approximated
by polygonal lines. The boundaries appear in increasing
sorted order with respect to their measured elongations. The
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Fig. 1 Computed elongations
by the new method. Elongations
computed by the standard
method are in brackets

measured standard elongations are given in the brackets. The
ranking is as expected and both measures give almost the
same ranking. There is only one exception. The third shape
in the second row is ranked 8th with respect to the new mea-
sure, while it is ranked 6th by the standard elongation mea-
sure. If this shape is omitted the rest of shapes have the same
ranking with respect to both measures. Such a higher mea-
sured elongation (by the new measure) in the case of the
third shape in the second row is caused mainly by sharp the
intrusions on right side of the shape boundary.

Several shapes presented in Fig. 2 are given in order to il-
lustrate the nature of the new measure. The first two shapes,
(a) and (b), have almost the same measured elongation if the
standard measure is used. If a new measure is used there is
an essential difference in the measured elongations. That is
caused by the fact that the new measure is boundary based
and deep intrusions into a shape have a big impact on the
measured elongation. Shapes (c) and (d) illustrate how shape
change could lead to different ranking if E and Estandard are
applied. This change in the ranking order of shapes (c) and
(d) (measured by the new elongations measure) is proba-
bly not preferred as the change in the ranking order for the
shapes (a) and (b). A lower new elongation measure of the
shape (c) could be explained by the fact that the function
F2,1(α,P ), in this a particular case, reaches the minimum
for α = 100◦. For such an angle, the most edges of the shape
(c) are either nearly orthogonal or nearly vertical to a line
having such a direction and the ration of maxF2,1(α,P ) and
minF2,1(α,P ) is more distinct than in the case of shape (d).
Shapes (e) and (f) illustrate that an intrusion has a bigger im-
pact on the measured elongation if it is along the direction
of the shape orientation.

Shapes (g)–(i) illustrate an interesting property of the
new measure. Namely, if a compound shape consists of sev-
eral shapes with the same elongation and if those shapes
have the same orientation, then the adding another shape
with the same elongation and the same orientation does not
change the elongation of such a compound shape. Indeed,
shapes (g) and (i) have the same measured elongation. Shape
(h) has almost the same elongation. The small man silhou-
ette is not just a result of the scaling of a big man silhou-
ette, which causes a slight difference in the measure. Since
the standard elongation measure does not have such a prop-
erty, the measured elongations (g)–(i) are essentially differ-
ent. A similar explanation is valid for shapes (j)–(k). Since
all three air-planes from the figure (k) can be obtained as a
scaling transformation of the shape (j) and because they have
the same orientation, then the measured elongations coin-
cide. The obtained elongation in the figure (l) is differs from
(j) and (k) because the air-planes in figure (l) do not have
the same orientation. Such a new measured elongation can
be useful in certain applications (when dealing with clusters
of similar objects—e.g. flock of birds, shoal of fish, etc.)
particularly if combined with the corresponding elongation
measured on the standard way.

We formulate this interesting property as a lemma.

Lemma 4.1 Let a compound shape S consist of several
shapes S1, . . . , Sm. If all shapes S1, . . . , Sm have the same
orientation and the same elongation, both computed by a
use of F2,1(S) then the computed elongation of S is consis-
tent with elongations of the shapes S1, . . . , Sm, i.e., E(S) =
E(S1) = · · · = E(Sm).

Proof The proof follows directly from the definition. �
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Fig. 2 Computed elongations
by the new method. Elongations
computed by the standard
method are in brackets

Fig. 3 Computed elongations
of objects composed by one or
several curve segment parts. The
new method is applied

We conclude this section with shapes that are presented
by partially detected boundaries and with shapes that are as-
sumed to be presented by curve segments. Such examples
are given in Fig. 3. The standard method cannot be applied
in the presented situations.

5 Elongation of Shapes with Arbitrary Boundaries

In this section we extend the new elongation measure to
shapes with arbitrary boundaries. First, we will show that
the measure E(P ) satisfies the “convergence property”. Pre-
cisely, let us assume we have a curve and a set of sample
points from it. Also, let us assume that we have the com-
puted elongation of the polygonal curve whose vertices are
the selected sample points. Then, roughly speaking, by the

convergence property of an elongation measure we mean
that the computed elongations (of polygonal curves deter-
mined by sample points) should converge when the den-
sity of sample points increases. Naturally, if the convergence
property holds, the limit value for the measured elongations
of polygonal lines determined by sample points is used as
the elongation measure of the sampled curve.

To prove the convergence property of E(P ) we need the
following simple identities

sin(2α) = 2 tanα

1 + tan2 α
,

cos(2α) = 1 − tan2 α

1 + tan2 α

(13)

and the following statement from integral calculus.
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Statement 1 Let ρ be a piecewise smooth enough curve
given in parametric form x = x(t), y = y(t) where t ∈
[a, b]. Let

A1 = (x(t = a), y(t = a)), A2, . . . , Ak−1,

Ak = (x(t = b), y(t = b))

be points from the curve ρ while a point Ãi is from
the arc segment AiAi+1. Also, let f (x, y) be a contin-
uous, piecewise sufficiently differentiable, function. Then∑k−1

i=1 f (x, y) · |AiAi+1| converges if max{|AiAi+1|,1 ≤
i < k} → 0 is provided. More formally

lim
max{|AiAi+1|,1≤i<k}→0

k−1∑
i=1

f (Ãi) · |AiAi+1|

=
∮

ρ

f (x, y)ds =
∫ b

a

f (x(t), y(t))

√
ẋ2 + ẏ2dt. (14)

Now, we give the main result of this paper that gives a for-
mula for computation of the new shape elongation measure
for shapes having arbitrary boundaries. A particular case of
this new formula is the formula (10) which holds for shapes
with polygonal boundaries.

Theorem 5.1 Let ρ be a piecewise smooth enough curve
given in parametric form x = x(t), y = y(t) where t ∈
[a, b]. Let

A1 = (x(t = a), y(t = a)), A2, . . . , Ak−1,

Ak = (x(t = b), y(t = b))

be points from the curve ρ and let PA1,...,Ak
be the polygonal

line whose vertices are A1, . . . ,Ak. Then the computed elon-
gations E(PA1,...,Ak−1,Ak

) converge if max{|AiAi+1|,1 ≤
i < k} → 0 is provided. More precisely,

lim
max{|AiAi+1|,1≤i<k}→0

E(PA1,...,Ak
)

=
Length(ρ) +

√(∮
ρ

2ẋẏ

ẋ2+ẏ2 ds
)2 + (∮

ρ
ẋ2−ẏ2

ẋ2+ẏ2 ds
)2

Length(ρ) −
√(∮

ρ
2ẋẏ

ẋ2+ẏ2 ds
)2 + (∮

ρ
ẋ2−ẏ2

ẋ2+ẏ2 ds
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=
Length(ρ) +

√(∫ b

a
2ẋẏ√
ẋ2+ẏ2
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)2 + (∫ b

a
ẋ2−ẏ2√
ẋ2+ẏ2
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)2

Length(ρ) −
√(∫ b

a
2ẋẏ√
ẋ2+ẏ2
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)2 + (∫ b

a
ẋ2−ẏ2√
ẋ2+ẏ2
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)2

(15)

where Length(ρ) is the length of the curve ρ.

Proof For each polygonal curve PA1,...,Pk
we have

lim
max{|AiAi+1|,1≤i<k}→0

k−1∑
i=1

|AiAi+1| = Length(PA1,...,Ak
)

(16)

where Length(PA1,...,Ak
) denotes the length of the polygo-

nal line PA1,...,Ak
.

Furthermore, by using the trigonometric identities (13)
and well-known fact that the first derivative ẏ

ẋ
of a curve

x = x(t), y = y(t) equals the tangent of the angle between
the curve tangent and the x-axis, and by applying (14) we
have

lim
k→∞

max{|AiAi+1|,1≤i<k}→0

k−1∑
i=1

|AiAi+1| · sin(2αi)

=
∮

C

2ẋẏ

ẋ2 + ẏ2
ds =

∫ b

a

2ẋẏ√
ẋ2 + ẏ2

dt, (17)

lim
k→∞

max{|AiAi+1|,1≤i<k}→0

k−1∑
i=1

|AiAi+1| · cos(2αi)

=
∮

C

ẋ2 − ẏ2

ẋ2 + ẏ2
ds =

∫ b

a

ẋ2 − ẏ2√
ẋ2 + ẏ2

dt. (18)

Entering (16)–(18) into (10) we establish the proof. �

We will illustrate the statement of Theorem 5.1 by the
following example—see Fig. 4.

Example Fifty points xi are selected at random three
times. The polygonal line having vertices (0,0) = (x1, x

2
1),

(x2, x
2
2), . . . , (x49, x

2
49), (x50, x

2
50) = (1,1) is oriented by the

new method. The following elongations are computed:

Fig. 7(a) The computed elongation is 11.26. The abscis-
sas of the selected points are:

0, 0.01548, 0.03768, 0.1714, 0.17163, 0.25785, 0.27185,
0.2785, 0.28133, 0.30199, 0.30501, 0.36028, 0.3729,
0.4025, 0.42834, .440952, 0.44444, 0.44854, 0.4561,
0.46496, 0.52758, 0.54522, 0.5477, 0.57911, 0.59521,
0.60459, 0.6282, 0.65274, 0.68177, 0.68867, 0.70455,
0.70498, 0.7217, 0.72928, 0.78194, 0.80431, 0.8188,
0.81885, 0.82833, 0.84286, 0.86448, 0.87797, 0.8859,
0.89792, 0.90586, 0.91493, 0.9265, 0.93262, 0.96803, 1.

Fig. 7(b) The computed elongation is 11.21. The abscissas
of the selected points are:

0, 0.01958, 0.03698, 0.04119, 0.09771, 0.14122, 0.16451,
0.19403, 0.22791, 0.25548, 0.26089, 0.27497, 0.3218,
0.3474, 0.35739, 0.36247, 0.41977, 0.43108, 0.43763,



J Math Imaging Vis (2008) 30: 73–85 81

Fig. 4 Fifty randomly selected
points (xi , x

2
i ) are displayed.

The polygonal line
(0,0) = (x1, x

2
1 ), (x2, x

2
2 ), . . . ,

(x49, x
2
49), (x50, x

2
50) = (1,1) is

measured by the new method.
The following convergent
measured elongations are
obtained: a 11.26, b 11.22, and
c 11.22. If the elongation is
measured by using F0,2(α,P )

then the following divergent
elongations are measured:
a 8.29, b 13.57, c 26.54

0.46182, 0.46467, 0.52494, 0.54177, 0.58073, 0.58357,
0.58912, 0.59408, 0.64511, 0.6537, 0.66437, 0.67948,
0.71158, 0.71524, 0.71797, 0.75207, 0.75233, 0.76885,
0.77291, 0.79283, 0.79366, 0.80336, 0.84576, 0.86491,
0.90572, 0.91077, 0.9126, 0.9396, 0.96122, 0.96832, 1.

Fig. 7(c) The computed elongation is 11.22. The abscissas
of the selected points are:

0, 0.01977, 0.04359, 0.06601, 0.11522, 0.13125, 0.14959,
0.15277, 0.15703, 0.16493, 0.18058, 0.20863, 0.21061,
0.24919, 0.25102, 0.25721, 0.26061, 0.26216, 0.28553,
0.29327, 0.32544, 0.37996, 0.39886, 0.39959, 0.43143,
0.4852, 0.49406, 0.49615, 0.50489, 0.50712, 0.5197,
0.52295, 0.52722, 0.53215, 0.53999, 0.54289, 0.57292,
0.57815, 0.60073, 0.670, 0.61667, 0.62405, 0.66466,
0.66548, 0.69530, 0.70383, 0.82888, 0.8369, 0.88341, 1.

As expected, because of the satisfied convergence prop-
erty all three obtained values (11.26, 11.21, and 11.22) are
similar and very close to the numerically obtained 11.2266
value.

Let us mention that the convergence property would not
be satisfied if the elongation is derived by using F2,0(α,P )

and defined as

E2,0(P ) = max{F0,2(α,P ) | ϕ ∈ [0,2 · π]}
min{F0,2(α,P ) | ϕ ∈ [0,2 · π]} . (19)

For the polygonal lines whose vertices are presented in
Fig. 4 the following elongations are computed: (a) (8.29), (b)
(13.57), (c) (26.54), illustrating that the elongation measure
E2,0 defined by (19) does not have the convergence property.

The previous theorem is said to be the main result of
the paper because it enables a closed formula for computing
elongation. This formula can also be applied to open curves
and curves consisting of several curve segment. If restricted
to polygonal curves, the new definition is consistent with
Definition 3.1 and it can be computed by using (10). Thus,
we give the next definition.

Definition 5.1 Assume that we have a piecevise smooth
enough curve ρ given in a parametric form x = x(t), y =
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Fig. 5 a The graph of E(P (u))

is presented. b illustrates that in
both cases, when u is either very
big or very small, the graph of
P (u) belongs to a very
elongated rectangle which
indicates that the measured
elongation should be very high

y(t), (t ∈ [a, b]). The elongation E(ρ) of the curve ρ is de-
fined as

E(ρ) =
Length(ρ) +

√(∮
ρ

2ẋẏ

ẋ2+ẏ2 ds
)2 + (∮

ρ
ẋ2−ẏ2

ẋ2+ẏ2 ds
)2

Length(ρ) −
√(∮

ρ
2ẋẏ

ẋ2+ẏ2 ds
)2 + (∮

ρ
ẋ2−ẏ2

ẋ2+ẏ2 ds
)2

=
Length(ρ) +

√(∫ b

a
2ẋẏ√
ẋ2+ẏ2

dt
)2 + (∫ b

a
ẋ2−ẏ2√
ẋ2+ẏ2

dt
)2

Length(ρ) −
√(∫ b

a
2ẋẏ√
ẋ2+ẏ2

dt
)2 + (∫ b

a
ẋ2−ẏ2√
ẋ2+ẏ2

dt
)2

.

Remark 5.1 New definition for measuring of elongation of
an arbitrary curve, as given by Definition 5.1, involves first
derivatives ẋ(t) and ẏ(t) for curves given in a parametric
form x = x(t), y = y(t). This is not a problem when work-
ing with curves described formally by the equations, as it
happens in computer graphics where equations of the curves
used are known very often. On the other side, the comput-
ing (estimating) first derivatives when working with sam-
ple (discrete) data is usually a big problem. This remark
should point out that an efficient estimation of E(ρ) does not
need computation (estimation) of the appearing derivatives.
As it has been stated by Theorem 5.1, the elongation mea-
sure E(ρ) can be estimated efficiently by a computation of
E(PA1,...,Ak

) if the set of sample points A1, . . . ,Ak is dense
enough on the curve ρ. The computation of E(PA1,...,Ak

) by
using the equation (10) is simple, fast, does not involve the
first derivative approximations, and guaranties the conver-
gence E(PA1,...,Ak

) → E(ρ).

As an illustration of the behavior of shape elongation
given by Definition 5.1 we give the following synthetic ex-
ample. Let us consider a parabola segment P(u) y = x2 on

the interval [0, u), where u varies from 0 to infinity. The
graph of E(P (u)) is presented in Fig. 5(a). As it can be seen,
for a very small u close to 0, the measured elongation is very
high and tends to infinity as u tends to 0. After that, E(P (u))

decrease and reaches the minimum somewhere close to 1.

After that E(P (u)) increases again, and tends to infinity if u

tends to infinity, too.
Such a behavior is expected. Indeed, for a very small u,

the parabola segment P(u) is contained in a very elongated
rectangle whose sides are u and u2. If u becomes very big,
then the rectangle that includes P(u) is again very elongated
because the ratio of its sides u2 and u is again very big (see
Fig. 5(b)).

At the end of this section will consider some problems
that could appear when compute E(P ).

First we start with the noise problems. Generally speak-
ing, all methods that use only boundary information must be
sensitive to boundary changes (e.g. deformations, intrusions,
noise, etc.). Inevitably, once we accept to work with bound-
ary informations and exploit the benefits that come from
sensitive methods, we have also to accept problems which
could come from the boundary sensitivity. Typical problems
are caused by a noise on images that should be processed.
Some of problems when dealing with a noise shape can be
avoid by a suitable choice of polygonal approximation or by
applying some standard procedures (e.g. smoothing). Some
noise effects to the computed shape elongation are illus-
trated on Fig. 6. It can be seen that a small noise could be ac-
ceptable for a still efficient elongation estimation (Fig. 6(b))
while a high noise could lead to an essential error (Fig. 6(d)).

Another disadvantage of the method presented here could
be the fact that the new elongation measure depends on the
edge lengths and the edge orientations but not on the order
of edges. Thus, the following lemma holds.
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Fig. 6 Computed elongations
E(P ) are given to illustrate
noise effects

Fig. 7 Computed elongations E
for shapes (b) and (c) that
consist of 19 vertical and 19
horizontal unit edges are both
equal 1. The digitized circular
arc in (b) is approximated by the
Ramer algorithm (arcs (d),
(e), (f)) and computed values are
closer to the exact elongation
value ( π+2

π−2 ≈ 4.5039) of an
ideal arc as the threshold level
in the Ramer algorithm decrease

Lemma 5.1 Let P be a polygonal boundary. Then the mea-
sured elongation E(P ) has the same value for all permuta-
tions of edges of P.

Notice that if P is closed polygon then all permutations
of edges of P do not necessarily give a closed polygon
again (the result can be an open polygonal line or a self-
intersecting polygonal line), but the elongation of such re-
sulting polygonal lines still can be measured by E . Also, it is
worth mentioning that a request that a given shape descrip-
tor assigns different values for (essentially) different shapes
is very reasonable but, in practice, is difficult to be achieved.
More precisely, up to our knowledge, there is no created de-
scriptor which reaches our perception in all situations.

A generalization of Lemma 5.1 is the following lemma.

Lemma 5.2 Let a polygon P = (e1, . . . , en) be a polygonal
boundary, ei an arbitrary, fixed edge of P and f1, . . . , fk be
a set of edges with same slope as the slope of ei and the total

sum of edge lengths equal to |ei | (i.e.
∑

1≤j≤k |fj | = |ei |).
Then the elongation E(P ) equals the elongation of all the
polygonal lines consisting of edges {el | 1 ≤ l ≤ n, l �= i} ∪
{fj | 1 ≤ j ≤ k}.

The situation described by Lemma 5.2 is illustrated by
Fig. 7. A digitalization (see [9]) of the south-east arc of a
circle is presented in Fig. 7(b). It consists of 19 vertical and
19 horizontal unit edges. If those edges are listed in the or-
der: 19 horizontal edges first, after that 19 vertical edges,
we get the polygonal line presented in Fig. 7(c). Due to
Lemma 5.2, both polygonal lines have the same measured
elongation equal to 1, which is not preferred.

Such an unprefered elongation of shape in Fig. 7(b) can
be corrected if a suitable polygonal approximation of the
presented digital arc is applied. In Fig. 7(d)–(f) the Ramer
[12] algorithm is applied for three different threshold val-
ues: 2, 4, and 8. The following computed elongations are
obtained: 4.4595, 4.5134, and 4.485, respectively. It can be
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seen that a decrease of the threshold value in the Ramer al-
gorithm lead to the measured elongations which are closer to
the theoretical value π+2

π−2 ≈ 4.5039 for the measured elonga-
tion of the south-east arc of a circle. This (exact) theoretical
value π+2

π−2 is obtained by applying the formula from Defini-
tion 5.1. Notice that any reasonably good polygonal approx-
imation algorithm will keep the shape in Fig. 6(c) almost
unchanged and, consequently, the corresponded measured
elongations would always be close to 1.

Problems similar to the previously discussed one would
happen if we work with digital curves that are presented by
the Freeman eight chain code [4, 9] where the shape bound-
ary is represented by edges having the lengths 1 (if their
slopes are k · 90◦, k = 0,1,2,3) or

√
2 (if their slopes are

k · 45◦, k = 1,3,5,7). The computed elongation E would
depend only on the numbers n0, . . . , n7 of the edges from a
particular class (determined by the belonging edge slopes).
Similarly as above, those problems can be avoid by a use of
a proper polygonal approximation.

To close this section, let us mention that such a phenom-
ena on curve measures are expected and easy to construct.
Very often, so called, ‘zig-zag’ curves are used for an il-
lustration and construction. Indeed, even if we use a dig-
italization presented in Fig. 7(b) for estimating a very ba-
sic descriptor, as the length of the digitized arc (see [3]) is,
we would obtain 38, what is far away from the exact length
38π

4 ≈ 29.8451 of the arc. Of course, the better estimates
would be obtained by a suitable polygonal approximation.

6 Conclusion

In this paper we have been dealing with shape elongation
which is one of the basic shape descriptors. The traditional
shape elongation measure is area based, and therefore de-
fined only for closed shapes. Here we introduced a bound-
ary based elongation measure for arbitrary shapes. Using our
method, elongation can be measured for shapes having par-
tially extracted boundaries, but also for shapes composed of
several components. The measure is invariant with respect
to rotation, translation and scaling. Also, the closed formula
for computation exists and it expresses the shape elongation
as

Length(ρ) +
√(∫ b

a
2ẋẏ√
ẋ2+ẏ2

dt
)2 + (∫ b

a
ẋ2−ẏ2√
ẋ2+ẏ2

dt
)2

Length(ρ) −
√(∫ b

a
2ẋẏ√
ẋ2+ẏ2

dt
)2 + (∫ b

a
ẋ2−ẏ2√
ẋ2+ẏ2

dt
)2

.

The above formula can be understood as even simpler than
the formula for the standard method (expression (3) for cen-
tralized moments should be entered into (4)).

To close, we would like to point out that the new mea-
sure is not developed in order to be dominant to the standard

one. It is clear that when working with shape descriptors,
it is not always possible to have a perfect or best measure.
All shape descriptors have their strengths and their weakness
while their usefulness is in a strong relation to the suitability
of particular applications.

Furthermore, the new measure is not developed ulti-
mately to be an alternative to the standard measure. It is not
difficult to imagine a situation where both measures could be
used to form useful conclusions from their mutual relation.
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