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Abstract  
 
The goal of image segmentation is to partition an 

image into regions that are internally homogeneous 
and heterogeneous with respect to other neighbouring 
regions. We build on the pyramid image segmentation 
work proposed by [BHR] and [SSN] by introducing a 
mixture of colour and texture cues in order to more 
accurately group regions. Statistical comparison of 
each colour channel separately along with edge 
intensity and orientation histogram comparison were 
the cues used for region merging. The input image size 
is no longer constrained as in [BHR], [SSN] and other 
similar regular pyramid based approaches due to a 
modification of the pyramid construction rule. The new 
algorithm is tested on a set of images from the Berkeley 
image segmentation benchmark set. Our algorithm is 
fast (produces segmentations within seconds), results 
in the correct segmentation of elongated and large 
regions, very simple compared to plethora of existing 
algorithms, and appears competitive in segmentation 
quality with the best publicly available 
implementations.  

 
1. Introduction 
 

Image segmentation can be very useful in many 
computer vision systems. It decomposes an image into 
homogeneous regions, which hopefully belong to the 
same object in the scene. Segmentation can be done 
according to some criteria by [MMB]. It is rarely 
achieved comprehensively for any single application, 
and algorithms that do perform well in one application 
are not suited for others.  

Pyramid segmentation was proposed in [RH, TP], 
and further elaborated on in [BHR]. Pyramids are 
hierarchical structures where each level is built by 
computing a set of local operations on the level below 
(with the original image being at base level or level 0 
in the hierarchy). Level L consists of a matrix of points 
where each point contains some data and a link to at 
most one parent point in level L+1. The value of a 

point at levels higher than the base level is derived 
from the values of all its children points at the level 
below. When this is applied to children points 
transitively down to the base level, the value at each 
point at a given level is decided by the set of its 
descendent pixels at the base level (its receptive field). 
Each point at level L also represents an image 
component and constructs the image segmentation at 
level L-1, consisting of pixels belonging to its receptive 
field (if nonempty). Thus each level has its predefined 
maximum number of components. However its 
minimum number of components is left open and 
depends on a concrete image.  

Image segmentation pyramids can be classified into 
regular and irregular types. Regular pyramids have a 
well-defined neighbourhood intra-level structure, 
where only natural neighbours in the mesh that defines 
a level of a pyramid are considered. Inter-level edges 
are the only relationships that can be changed to adapt 
the pyramid to the image layout. A constant reduction 
factor between levels is found in literature and pertains 
to regular pyramids [MMB]. Regular pyramids can 
suffer several problems [A, MMB]: non-connectivity 
of the obtained receptive field, shift variance, or 
incapability to segment elongated objects.  

To address the limitation of regular pyramids, 
irregular pyramids were proposed which vary in 
structure, increase the complexity and run time of the 
algorithms, and/or are dependent on prior knowledge of 
the image domain to be designed successfully. In the 
irregular pyramid framework, the relationships and 
reduction factors between levels are non-constant. 
Existing irregular pyramid based segmentation 
algorithms were surveyed in [MMB]. The described 
methods all appear very complex, have higher time 
complexities compared to regular pyramids and all 
consider the connectivity of the receptive field (base 
layer) as a design goal. Regular pyramids have a 
limited size of input: 2n x 2n pixels. We have modified 
the pyramid construction procedure such that it now 
accepts any size of input. Our new procedure 
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eliminates this deficiency of regular pyramids while 
avoiding the complexity of irregular pyramid structures.  

In [SSN], the authors observe that the connectivity 
of the receptive field (region in segmentation) is not 
always a desirable characteristic. For instance, in 
forestry and certain medical applications, the same type 
of vegetation or biomass could be present in several 
parts of the image, and treating them as a single 
segment may in fact be preferred for further processing. 
The proposed segmentation algorithm, called LS (Link 
Shifting), allows for non-connectivity of the receptive 
fields. Common receptive fields are coloured with 
common colours when the segmentation results are 
displayed.  

The LS algorithm [SSN] is inspired by the regular 
pyramid linked approach (PLA) originally proposed by 
Burt et al. [BHR]. In the method proposed by [BHR], 
nodes from one level may alter their selection of parent 
at each iteration of the segmentation algorithm, which 
differs from previous pyramid structures. Starting from 
the base level (0), links between the current level L and 
level L+1 are decided. Each vertex at level L has four 
fixed candidate parents, and chooses the one which is 
the most similar from the higher level. The value of 
each parent is recalculated by averaging the values of 
its current children. Such iterations continue until the 
child-parent edges do not vary, or a certain number T 
of iterations is reached. The process then continues at 
the next higher level pair of levels. The main advantage 
of this method is that it does not need any threshold to 
compute the similarity between nodes at the same level. 
In the original method [BHR], each node must be 
linked to one parent node. Antonisse [A] introduced 
‘unforced linking’ which allows the exclusion of some 
vertices from linking, and the presence of small 
components in the segmented image. Let include(u) be 
m times the standard deviation of a 3x3 neighbourhood 
around the node u (m is a parameter, whose value is 2 
for 95% confidence and 3 for 99% confidence 
assuming a normal distribution of pixel intensities). 
This function is used to find the most similar parent q 
to node u. If u differs from q by at most include(u), u 
links to q. Otherwise, u fails to link to q and becomes 
the root of a new sub pyramid [A]. [SSN] changed this 
rule because ‘unforced linking’ of u and its parent was 
unnecessarily dependent on the neighbours of u in the 
existing rule from [A]. 

Antonisse [A] also proposed path fixing which 
defines some arbitrary path from the image(base) level 
to the top level to be fixed. This was indirectly applied 
here by the initial selection of random numbers for 
each pyramid vertex which were used for tie-breaking. 
Antonisse [A] also proposed randomized tie-breaking: 
when potential parent nodes have the same values, the 

choice of the parent is randomized. The tie-breaking 
rule has been completely redesigned in [SSN]. 

Burt et al [BHR] limit the choice of parent to 4 fixed 
nodes directly above the child. This approach has 
contributed to more successful segmentation, but due to 
the limited selection of parents, elongated and 
generally large segments that cover a significant 
portion of the image are not considered ‘joined’.  

We strive to design an algorithm that would 
properly handle elongated objects, while not enforcing 
connectivity of the receptive field and preserving shift 
invariance (the stability when minor shifts occur). This 
algorithm should also have favourable time complexity 
and execution time (within seconds, depending on the 
size of the images), and overall simplicity, so that it can 
be easily understood, implemented, and used in 
practice. 

To achieve these goals, [SSN] made some simple 
changes in the way parent nodes are selected in the 
regular pyramid framework, which resulted in major 
improvements in their performance, including reduced 
shift variability and handling elongated objects. Instead 
of always comparing and selecting among the same 
four candidate parent nodes, each vertex at the current 
level selected the best node among its current parent, 
its current parent’s neighbours, and the current parents 
of its neighbouring vertices at the same level. 4 
connectivity neighbours were used in their 
implementation.  

This paper makes numerous changes to the LS 
algorithm [SSN] and Co-parent LS algorithm [SSN2]. 
The new algorithm proposed here is called CTLS 
(Colour Texture Link Shifting). We describe bellow 
our new algorithm in full, and outline changes made 
from CPLS [SSN2]. The main improvement was 
changing the features used, from greyscale intensities 
to colour and texture cues, which resulted in more 
accurate merging of regions to produce results more 
appealing to humans. This is due to the greater quantity 
of information that is available when looking at an 
image in 3 channels instead of one, and taking into 
account the orientations and intensities of the edges 
present when making a segmentation decision. We 
have expanded upon the Student T-test between 
greyscale (one dimensional) based regions to an RGB 
(three dimensional) T-test based on differences 
between corresponding channels within regions, 
derived from means, deviations, and receptive field 
sizes. All three channels between two candidate regions 
must satisfy the test in order for them to be successfully 
merged. In addition to the three channel based 
comparison method, we add texture features to the 
merging process which was derived from [AGBB]. 
Each pixel is represented by a histogram of edge 
intensities divided into k bins, each of which is π/2k 
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degrees in width. Edge intensities of each pixel are 
calculated by 3x3 Laplacian edge masks and placed 
into their corresponding bin according to their 
orientation. Chi squared distributions of edge intensity 
histograms of regions are also taken into consideration 
when making a merging decision. A 95% confidence 
interval is enforced when making linking decisions 
based on edge intensity histograms. This texture based 
decision carries equal weight compared to the colour 
based decision in determining which child regions link 
to which parents starting from the base level of the 
pyramid. 

Experiments were conducted on images from the 
Berkeley image segmentation data set. Evaluating 
segmentation quality in imagery is a subjective affair, 
and not easily done. “The ill-defined nature of the 
segmentation problem” [MMB] makes subjective 
judgment the generally adopted method (existing 
quantitative measurements are based on subjective 
formulas). In general, it is not clear what a ‘good’ 
segmentation is [MMB].  Even though the Berkeley 
data set provides human results that outline where 
people think the general segmentation boundaries 
should be, it does not label segments as being part of 
the same object or not. Our algorithm provides both 
outlines of the segmentation results and labels the 
segments. The quality of the obtained segmentations 
appears visually satisfying for at least one level in each 
image. Our experiments are compared with several 
measures in literature that have available 
implementations and the results show that our method 
is comparable to the best existing algorithms. 

 
2. Pyramid Image Segmentation 
Algorithm 

 
Here we describe the proposed pyramid 

segmentation algorithm. The input to the algorithm is a 
colour, 3 channel (RGB) image of dimensions m x n 
pixels, for m, n≥1. Let C(c, u) represent the colour 
intensity of channel c, belonging to pixel u, where 
c={R, G, B} or {1, 2, 3}, with C(c, u)∈ [0, 255]. The 
output is the original image overlaid with the resultant 
segmentations at each level. In the pseudo code and 
discussion below, L is the level of the pyramid, L=0, 
1 …, M, M = ( )( )⎡ ⎤nm,maxlog . The bottom level (L = 0) 
is a matrix of m x n pixels, representing the original 
image. Level L is a matrix with ⎡m/2L⎤ rows and ⎡n/2L⎤ 

columns, L = 0, 1, 2 … M. The top level M has one 
element. 

 
2.1 Creating the initial image pyramid at each 
level 
 

We describe and use the overlapping image pyramid 
structure from [BHR], but applied to any image size. 
Initially, the children of node [i, j, L] are: [i’,j’,L-
1]=[2i+e, 2j+f, L-1], for e,f ∈ {-1,0,1,2}. There are a 
maximum of 16 children. That is, each {2i-1, 2i, 2i+1, 
2i+2} can be paired with each {2j-1, 2j, 2j+1, 2j+2} to 
produce the coordinates of the 16 children. For i=j=0 
there are 9 children, and for i=0 and j>0 there are 12 
children. There are also maximum index values (⎡m/2L-

1⎤,  ⎡n/2L-1⎤) for any child at level L-1, which also 
restricts the number of children close to the maximum 
row and column values. For L= M there are four 
children of single node [0, 0, M] on the top: [0, 0, M-1], 
[0, 1, M-1], [1, 0, M-1], [1, 1, M-1] since the minimum 
index is 0 and the maximum is 1 at level M-1. Two 
neighbouring parents have overlapping initial children 
allocations. Conversely, each child [i, j, L] for L<M has 
4 candidate parent nodes (if they exist) [i”, j”, 
L+1]=[(i+e)/2, (j+f)/2, L+1], for e,f∈{-1,1}, where 
integer division is used (see Figure 1). Pixels at the 
edges of the image have fewer parents to choose from. 
The average intensity of all possible children is set as 
the per channel initial intensity value of the parent v, 
for nodes at levels L>0. 

 
2.2 Texture comparison based on edge intensity 
distributions 
 

Laplacian intensities were calculated using 3x3 
Sobel masks for each pixel. The orientations of each 
pixel are calculated from its intensity in both directions. 
Let P be the greyscale version of the input image, 
determined by taking a weighted sampling of the red, 
green and blue colour spaces: P=0.212671*R + 
0.715160*G + 0.072169*B. 

Let P(i, j) represent the value of the pixel at point 
(i,j). Output edge orientation images X and Y in the x 
and y directions respectively, are computed as follows: 

 
( ) ( ) ( )

( ) ( ) ( )1,11,1,12
,121,11,1),(

++++−−++
+−−−++−−−=

jiPjiPjiP
jiPjiPjiPjiX

( ) ( ) ( )
( ) ( ) ( )1,11,21,1

1,11,21,1),(
++++++−+

+−+−−−−−−=
jiPjiPjiP

jiPjiPjiPjiY  .

  
The image R(i, j) is called a Laplacian image, and is 

defined as R(i, j)=sqrt(X(i, j)2 +Y(i, j)2). The result of 
this operation is another greyscale image with a black 
background and varying shades of white around the 
edges of the objects in the image.  
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Figure 1 – Bin Orientations 

 
The orientation of each pixel R(i, j) in the Laplacian 

image is found (in degrees) as  
orientation(i,j)= π/180)),(),,(arctan( ×jiXjiY . 

The orientations are divided into 6 bins so that 
similar orientations can be grouped together. The 
whole orientation space (2π) is divided into 6 bins. The 
division of the bins which places 00 or 900 at the border 
of two bins poses problems since all vertical and 
horizontal edges can fall into separate bins. We handle 
this problem by shifting all off by 15 degrees. This bin 
shifting technique was proposed in [S] in order to 
improve clustering of similar bin orientations. To fit all 
of the orientations into the 0-1800 range, we add 1800 if 
the angle is < 00, and subtract 180 if the angle is >1800. 
The effects of these transformations can be seen in 
Figure 1.  

Each pixel u in the original image, and each vertex u 
at each level of the pyramid, was assigned a vector of 
edge intensities B(b, u) (b= 1,2,…,6), where each field 
b in the vector corresponds to an edge orientation bin. 
At pixel level,  B(b, u)= R(i, j) if orientation(i,j) is in 
bin b, and =0 otherwise. As the image pyramid is 
constructed, the edge intensity vectors of parent nodes 
are maintained where each vector contains an average 
intensity B(b, u) per bin of all children belonging to it 
(calculation of averages is weighted by the size of 
receptive fields, similarly as for colors). 

 
2.3 Testing similarity of two regions, 
unforced linking and the tie-breaking rule 

 
Our algorithm makes use of a similar procedure to 

that of [SSN] for comparing the similarity of two 
regions, namely the receptive fields of a vertex u and 
its candidate parent v. In [SSN], these two vertices are 
similar (similar(u,v)=true) if their intensities are 
roughly the same. Also in LS [SSN], a simple threshold 
S=15 for testing similarity was used. They also used a 
test for dissimilarity of two regions, to decide whether 
or not the best parent is an acceptable link, for the 
unforced linking option where a simple threshold based 

comparison against threshold value D = 70 was used. 
Since we have a 3D space, we use the Euclidian 
distance between the points in RGB and define S’ and 
D’ as follows: S’ = 96.513 2 =⋅ S  and  D’ = 

24.1213 2 =⋅D .  
In order to compute the similarity of edge 

distributions for vertices u and v, we used a normalized 
chi-squared distribution with a 95% confidence level 
and 6 degrees of freedom. To compute dissimilarity, 
the same distribution was compared to a confidence 
value of 5%, which corresponds to a value of ≈10. Let 
n(u) denote the number of pixels in the receptive fields 
of u. We also use same notation C(c, u) to denote the 
average color intensity of pixels in the receptive field 
of node u.  

The two comparison functions are formally defined 
as follows.  
 
Function dissimilar(u,v) 

( ) ( )( )∑
=

−=
3
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2,,
c

vcCucCColourDiff  
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( ) ( )∑
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If ColourDiff  > D’ Or BinsDiff  > 10 then 
disimilar=true else disimilar=false. 

} 
Function similar is defined via a statistical test 

between receptive field distributions u and v when 
possible. It resulted in better image segmentations, but 
when an analogous improvement was attempted for the 
function dissimilar there was no further improvement, 
so only the simple version was used. In case receptive 
fields exist with single pixels, and therefore variance 
values of 0, the simple colour intensity difference test 
was used with S’ = 51.96. Let n(u) denote the number 
of pixels in the receptive fields of u. Note that n(u) is 
used in calculating C(c, u) from the colour intensity 
values of the children. For example, if w1, w2 and w3 
are children of u and n(u) = n(w1) + n(w2) + n(w3), then 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
{ }3,2,1

,/,,,, 332211

∈
⋅+⋅+⋅=

c
unwnwcCwnwcCwnwcCucC  

The intensity of the parent is the weighted sum of 
intensities of its children. Let S(c, u), where c={R,G,B} 
or {1,2,3}, denote the variances per channel of node u, 
that is, the variances of pixel color intensities in its 
receptive field. 
Similar (u, v) { 

If n(u) = 1 or n(v) = 1 { 

( ) ( )( )∑
=

−=
3

1

2,,
c

vcCucCcolourDiff  
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If colourDiff < S’ Then similar=true Else 
similar=false} 

Else { 
Check = 0 
For each channel c { 

If n(u) <30 or n(v) <30  
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 If test > 2 then Check = check +1 
} 
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b vbBubB
vbBubBBinsDiff  

If check = 0 and BinsDiff < 2 then similar=true 
Else similar=false} 

} 
Each vertex u is initially assigned a random number 

r(u) in [0,1] which is never changed later on. Let w be a 
child node that compares parent candidates u and v, and 
let better(w, u, v) be one of u or v according to the 
comparison. The function is as follows. 

Function better(w, u, v) 
 better=v; 

If similar(w,u) and similar(w,v) then  
{ if n(u)>n(v) or (n(u)=n(v) and r(u)>r(v))  

then better=u } 
else if distance(w,u)<distance(w,v) or 

(distance(w,u)=distance(w,v) and 
n(u)>n(v)) or 
(distance(w,u)=distance(w,v) and 
n(u)=n(v) and r(u)>r(v))   

then better=u;  
In our current implementation, the distance function 

is defined as follows (same as ColourDiff above): 
distance ( ) ( )( )∑

=

−=
3

1

2,,
c

ucCwcC . 

The function better normally selects the parent that 
is closer to the child node, based on the distance 
function, which is currently their Euclidian distance in 
RGB space. However, if they are both close (that is, 
similar) to the child node then the decision is made 
based on the size of their receptive fields, which is used 
as the secondary key in the comparison. If needed, the 
random numbers are used as ternary, tie breaking key 
for final arbitrage. 
 

2.4 Candidate Parents 
 
Among the candidate parents, each vertex at the 

level below selects the one which the closest to it, 
using the function better described above. For the first 
iteration, each vertex has up to four candidate parents, 
as per initial setup described by [BHR], and seen in 
Figure 2 (a). This fixed set of candidate parents has 
been changed (for further iterations) in our algorithm 
by a dynamic flexible set of candidate nodes that 
revolves around the current parent selection and the 
parent selection of neighbouring vertices at the same 
level. Suppose node w = [i, j, L] is currently linked to 
parent u = [i”, j”, L + 1] in iteration t, which we will 
denote simply by p(w) = u. The full notation would 
lead to p[i, j, L][t]=[i”, j”, L + 1][t], and is convenient 
for easy listing of candidate parents. One set of 
candidate parents consists of the current parent and its 
8 neighbours at the same level. Thus, in our notation, 
the candidate parents for the next iteration are: [i”+ e, 
j”+ f, L + 1], where e, f ∈ {-1, 0, 1}. This produces a 
maximum of 9 candidate parents, which is a 3x3 grid 
centered at the currently linked parent. Four additional 
parent candidates were added by [SSN], by considering 
the current selection (from the previous iteration) of 
neighbouring vertices at the same level. This is 
illustrated in Figure 2 (b). For w=[i, j, L] and iteration 
t+1, we also consider p[i+1, j, L][t], p[i-1, j, L][t], p[i, 
j+1, L][t], and p[i, j-1, L][t] as parent candidates, if 
they exist. Both sets allow us to shift the parent further 
away in the next iteration, and possibly link the current 
child to a remote parent after the iterative process 
stabilizes (with no more changes in the selected 
parents). This parent selection procedure is directly 
responsible for the ability of the algorithm to handle 
elongated objects. Note that we consider a 5x5 
candidate parent grid centered on the current parent 
after half of the levels of the pyramid have been 
traversed by our algorithm. The segmentation quality 
was better than using 3x3 only or 5x5 only at all levels. 
This change does not however adversely impact the 
execution speed of the program since there are fewer 
children at higher levels of the pyramid, and raising the 
number of candidate parents from 13 to 29 does not 
constitute a significant increase in run time of the 
algorithm.  

[SSN] introduced a concept called ‘co-parent’ 
identification in candidate parent selection. Its main 
purpose is to unite similar segments early on in the 
segmentation algorithm. Similarly, the co-parent of 
parent u, at level L+1, denoted c(u), is a node at the 
same level as u, is similar to u, and at least one child at 
level L switched from u to c(u) at the end of a parent 
selection iteration. Even if several co-parent candidates 
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are available, at most one co-parent is selected by 
picking the one with the largest receptive field (the 
random number is used to break the tie if needed). Let 
p(w) be the parent for node w at the end of the previous 
iteration, and let p’(w) be the selected (possibly new) 
parent of w after comparing 13 or 29 candidate parents. 
The co-parent of u, denoted c(u), is calculated using the 
function find-co-parent(u), who’s pseudo code is below.   
 

 
Figure 2 - Simple parent selection (a). 9 + 4 
parent selection (b) 
 

Function find-co-parent(u)  //  returns c(u) 
c(u)=-1 // co-parent of u does not initially exist 
For each child w at level L Do {  // p(w)=u 

If p’(w)   exists and p’(w)  ≠ p(w)    { 
If similar(u, p’(w)) { 

If c(u)=-1 or (similar(c(u), p’(w)) and 
((n(p’(w))>n(c(u)) or (n(p’(w))=n(c(u)) 
and  
r(p’(w))>r(c(u)))) 

 then c(u)=p’(w) } }} 
 

Once the co-parents of each parent are found at level 
L, each child tests its next iteration parent against the 
co-parent of its current parent. The better one of these 
two parents is selected as the next iteration parent. 

 
2.5 Pyramid Segmentation 

 
Once the pointers to parents have been initialized, 

the segmentation procedure may begin. Parent 
selections are attained at a given level (starting at level 
0, and working toward the top of the pyramid) after a 
maximum of T iterations, before the process advances 
to the next level. At level L, each pixel initially points 
to the closest among four parents from the initial 
pyramid structure. In the subsequent iterations, it points 
to the (temporary) parent which best suits it in layer 
L+1, among the 9+4 or 25+4 candidate parents. This 
temporary parent is then compared to one more 
candidate, its co-parent, to yield the parent for the next 
iteration. The best parent is then tested for possible 
application of unforced linking based on dissimilarity. 
At the end of each iteration, the intensities of the 
parents in level L+1 are recalculated based on the 

average intensity of the pixels in its current receptive 
field. Since these averages are calculated from the 
averages of its children, they must be appropriately 
weighted (by the number of pixels in the receptive 
fields of the children). Similarly the size of the 
receptive field, and the variance of the pixel intensities, 
are recalculated. Children that refused the link due to 
unforced linking (unforced(w)=false) are not 
considered in this calculation; however such children w 
continue looking for a parent in the next iteration. In 
case a child node has no current candidate parents, and 
its parent from the previous iteration has an empty 
receptive field, the child takes over that empty parent 
and transfers its receptive field onto it. This cycle of 
choosing parents, recalculating intensities, and 
reassigning parents continues for T = 10 iterations per 
pair of layers. The algorithm can be, at the top level, 
described as follows. 
For levels L = 0 to N-1 Do { 

For each parent node u at level L+1 Do { 
Calculate initial parent intensity values, 
standard deviation, and receptive field size 
using 4x4 overlapping areas and default 
children. }; 

For each child node w in level L Do { 
choose initial parent p(w)  among 4 
default parents in level L + 1.  

If dissimilar(w, p(w)) Then unforced(w) = 
false  

Else unforced(w) = 
true.  }; 

For iter = 1 to T Do { 
For each parent node v at level L+1 Do { 

calculate new values for I(v), n(v), s(v) 
based on children u with  

p(u)=v and unforced(u)=true }; 
For each child w at level L Do { 

select parent u among the 9+4 candidates 
(for L < (N-1)/2, and 25+4  otherwise) 
using method better (w, u, v) comparing 
currently best parent u and a candidate v.  
p’(w)= u   /* temporary parent  } 

For each parent u at level L+1 Do { 
find co-parents c(u) of u using function 
find-co-parent (u). } 

For each child w at level L Do { 
p(w)= better(w, c(p(w)), p’(w))  /* 
Compare p’(w) with co-parent c(p(w)) of 
its parent p(w) from the previous iteration 
to yield new parent p(w) for the next 
iteration;  
If dissimilar(w, p(w)) Then unforced(w) 

= false  
Else unforced(w) = 

true.  } 
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} 
} 
Display segmentation for each level in pyramid. 
 
3. Experimental Results 

 
The algorithm presented here was designed to solve 

the problem of correctly segmenting objects in images 
within the framework of regular pyramid segmentation. 
It works on various types of everyday imagery: both 
colour and greyscale, although it was designed to take 
advantage of colour images which give more 
information with which to process the image. We have 
tested our algorithm on images of from the Berkeley 
image segmentation benchmark set, whose images are 
generally of size 481 x 321 pixels. The processing time 
per image is 35 seconds for the images on a single core 
of a Pentium 2.66 GHz dual core machine, 
implemented in C# on the Windows XP operating 
system.  
 
3.1 Segmentation Results 

 
We compared our Colour Texture link shifting 

(CTLS) algorithm to the algorithm proposed by 
[AGBB], who also employ a type of hierarchical 
segmentation structure but take into considerations 
texture as well as colour. The other algorithm used for 
comparison is the mean shift segmentation algorithm 

[CM] implemented by [CGM] and named EDISON. 
The human segmentation results of the images are also 
shown. All of the tested approaches (including our own) 
are relatively parameterless, or the parameters have 
been set once, and remain consistent throughout testing 
for all of the tested images. In the case of [AGBB, 
CGM], their default settings were used in the 
implementations found. We have also fixed parameter 
values in our own implementation, as described in the 
text. The test results of all the algorithms are seen in 
Figure 3.  

We show only the best level of segmentation of 
each pyramid since they best reflect the desired 
segmentation results for these images. The algorithms 
shown here have tendencies either to oversegment or 
undersegment images systematically, but sometimes 
perform adequately according to human observations. 
The algorithm of [CGM] tends to oversegment images, 
and that of [AGBB] tends to undersegment them. Our 
CTLS algorithm tends to sometimes over segment 
areas that are textured. In has trouble with colour 
gradients since they contain no edges, but instead a 
gradual change in colour. Since our solution is 
threshold based, it eventually cuts this seamless 
gradient in peculiar locations. In the cases of coarsely 
textured images, [AGBB] performs best. However, 
based on this selection of images from [MFTM], the 
algorithms are fairly competitive. 

.  
  

Original image          human solution                CTLS          CGMA                          GBB 
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Figure 3 – Sample images and segmentations 

 
4. Future Work 

 
The part of the algorithm that needs most 

improvement is an automated selection of parameters 
that would increase the quality of segmentation of any 
general image. Currently some thresholds are set, but 
they are not optimal for all images. The introduction of 
a metric for self adjustment of parameters would be an 
interesting research topic. Another addition to the 
algorithm would involve finding better ways of joining 
child and parent nodes in the mid-level part of the 
pyramid. In the current scheme, pixels at the early 
levels of segmentation have many parents to choose 
from, and clusters are made fairly easily. However, 
these parents that represent early clusters find 
themselves relatively isolated with respect to the 
number of neighbours they have in their immediate 
vicinity. An adjustment needs to be introduced such 
that isolated parent nodes on any level can expand their 
search in order to be able to find neighbouring nodes 
with non empty receptive fields. This would enable 
their children to have a greater selection of parent 
nodes, and would speed up the segment merging 
process.  

The algorithm can be modified in a variety of ways. 
We have tested a variety of options for functions 
dissimilar and distance, involving standard deviations, 
but none of them improved the outcome. However, 
there are other possible definitions for these functions 
that could be tested.  

The algorithm can also be modified to enforce 
connectivity of receptive fields, either at the very end 
(applying a connected components algorithm to 
subdivide a region into connected pieces), or similarly 
splitting parents during the parent selection process.  

To improve the outcome of this segmentation 
algorithm, one would have to have at least some prior 
knowledge of the scene that is to be segmented. Such 
knowledge includes the minimum possible segment 
size, and possibly a range of pixel intensities within a 
region that could be considered homogenous. Other 
solutions may include considering more than just 
greyscale intensities of input data. In the current 
implementation, just the RGB layers are considered, 
and they are combined into just a single layer greyscale 
representation of the original image. By considering the 
Euclidean distance between two 3D points in an RGB 

space instead of simply considering greyscale 
differences, more accurate parent selection could be 
achieved at the expense of increased computation time.  

We have used and experimented with the 
overlapping image pyramid structure as originally 
proposed in [BHR]. This refers to the fact that parent 
vertices at level 1 have overlapping receptive fields. 
Antonisse [A] already argued that perhaps a non-
overlapping structure could perform better. We left this 
modification for further study, so that we can first 
investigate the impact of a single major change 
proposed here, the use of flexible parent links.  
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