
978-1-4244-5857-8/10/$26.00 ©2010 Crown ICALIP2010 778

Colour and Texture Based Pyramidal Image Segmentation

Milos Stojmenovic, Andres Solis-Montero, Amiya Nayak
1 University of Ottawa, Canada

e-mails: mstoj075@site.uottawa.ca, amon@site.uottawa.ca, anayak@site.uottawa.ca

Abstract

The goal of image segmentation is to partition an

image into regions that are internally homogeneous
and heterogeneous with respect to other neighbouring
regions. We build on the pyramid image segmentation
work proposed by [BHR] and [SSN] by introducing a
mixture of colour and texture cues in order to more
accurately group regions. Statistical comparison of
each colour channel separately along with edge
intensity and orientation histogram comparison were
the cues used for region merging. The input image size
is no longer constrained as in [BHR], [SSN] and other
similar regular pyramid based approaches due to a
modification of the pyramid construction rule. The new
algorithm is tested on a set of images from the Berkeley
image segmentation benchmark set. Our algorithm is
fast (produces segmentations within seconds), results
in the correct segmentation of elongated and large
regions, very simple compared to plethora of existing
algorithms, and appears competitive in segmentation
quality with the best publicly available
implementations.

1. Introduction

Image segmentation can be very useful in many
computer vision systems. It decomposes an image into
homogeneous regions, which hopefully belong to the
same object in the scene. Segmentation can be done
according to some criteria by [MMB]. It is rarely
achieved comprehensively for any single application,
and algorithms that do perform well in one application
are not suited for others.

Pyramid segmentation was proposed in [RH, TP],
and further elaborated on in [BHR]. Pyramids are
hierarchical structures where each level is built by
computing a set of local operations on the level below
(with the original image being at base level or level 0
in the hierarchy). Level L consists of a matrix of points
where each point contains some data and a link to at
most one parent point in level L+1. The value of a

point at levels higher than the base level is derived
from the values of all its children points at the level
below. When this is applied to children points
transitively down to the base level, the value at each
point at a given level is decided by the set of its
descendent pixels at the base level (its receptive field).
Each point at level L also represents an image
component and constructs the image segmentation at
level L-1, consisting of pixels belonging to its receptive
field (if nonempty). Thus each level has its predefined
maximum number of components. However its
minimum number of components is left open and
depends on a concrete image.

Image segmentation pyramids can be classified into
regular and irregular types. Regular pyramids have a
well-defined neighbourhood intra-level structure,
where only natural neighbours in the mesh that defines
a level of a pyramid are considered. Inter-level edges
are the only relationships that can be changed to adapt
the pyramid to the image layout. A constant reduction
factor between levels is found in literature and pertains
to regular pyramids [MMB]. Regular pyramids can
suffer several problems [A, MMB]: non-connectivity
of the obtained receptive field, shift variance, or
incapability to segment elongated objects.

To address the limitation of regular pyramids,
irregular pyramids were proposed which vary in
structure, increase the complexity and run time of the
algorithms, and/or are dependent on prior knowledge of
the image domain to be designed successfully. In the
irregular pyramid framework, the relationships and
reduction factors between levels are non-constant.
Existing irregular pyramid based segmentation
algorithms were surveyed in [MMB]. The described
methods all appear very complex, have higher time
complexities compared to regular pyramids and all
consider the connectivity of the receptive field (base
layer) as a design goal. Regular pyramids have a
limited size of input: 2n x 2n pixels. We have modified
the pyramid construction procedure such that it now
accepts any size of input. Our new procedure

 779

eliminates this deficiency of regular pyramids while
avoiding the complexity of irregular pyramid structures.

In [SSN], the authors observe that the connectivity
of the receptive field (region in segmentation) is not
always a desirable characteristic. For instance, in
forestry and certain medical applications, the same type
of vegetation or biomass could be present in several
parts of the image, and treating them as a single
segment may in fact be preferred for further processing.
The proposed segmentation algorithm, called LS (Link
Shifting), allows for non-connectivity of the receptive
fields. Common receptive fields are coloured with
common colours when the segmentation results are
displayed.

The LS algorithm [SSN] is inspired by the regular
pyramid linked approach (PLA) originally proposed by
Burt et al. [BHR]. In the method proposed by [BHR],
nodes from one level may alter their selection of parent
at each iteration of the segmentation algorithm, which
differs from previous pyramid structures. Starting from
the base level (0), links between the current level L and
level L+1 are decided. Each vertex at level L has four
fixed candidate parents, and chooses the one which is
the most similar from the higher level. The value of
each parent is recalculated by averaging the values of
its current children. Such iterations continue until the
child-parent edges do not vary, or a certain number T
of iterations is reached. The process then continues at
the next higher level pair of levels. The main advantage
of this method is that it does not need any threshold to
compute the similarity between nodes at the same level.
In the original method [BHR], each node must be
linked to one parent node. Antonisse [A] introduced
‘unforced linking’ which allows the exclusion of some
vertices from linking, and the presence of small
components in the segmented image. Let include(u) be
m times the standard deviation of a 3x3 neighbourhood
around the node u (m is a parameter, whose value is 2
for 95% confidence and 3 for 99% confidence
assuming a normal distribution of pixel intensities).
This function is used to find the most similar parent q
to node u. If u differs from q by at most include(u), u
links to q. Otherwise, u fails to link to q and becomes
the root of a new sub pyramid [A]. [SSN] changed this
rule because ‘unforced linking’ of u and its parent was
unnecessarily dependent on the neighbours of u in the
existing rule from [A].

Antonisse [A] also proposed path fixing which
defines some arbitrary path from the image(base) level
to the top level to be fixed. This was indirectly applied
here by the initial selection of random numbers for
each pyramid vertex which were used for tie-breaking.
Antonisse [A] also proposed randomized tie-breaking:
when potential parent nodes have the same values, the

choice of the parent is randomized. The tie-breaking
rule has been completely redesigned in [SSN].

Burt et al [BHR] limit the choice of parent to 4 fixed
nodes directly above the child. This approach has
contributed to more successful segmentation, but due to
the limited selection of parents, elongated and
generally large segments that cover a significant
portion of the image are not considered ‘joined’.

We strive to design an algorithm that would
properly handle elongated objects, while not enforcing
connectivity of the receptive field and preserving shift
invariance (the stability when minor shifts occur). This
algorithm should also have favourable time complexity
and execution time (within seconds, depending on the
size of the images), and overall simplicity, so that it can
be easily understood, implemented, and used in
practice.

To achieve these goals, [SSN] made some simple
changes in the way parent nodes are selected in the
regular pyramid framework, which resulted in major
improvements in their performance, including reduced
shift variability and handling elongated objects. Instead
of always comparing and selecting among the same
four candidate parent nodes, each vertex at the current
level selected the best node among its current parent,
its current parent’s neighbours, and the current parents
of its neighbouring vertices at the same level. 4
connectivity neighbours were used in their
implementation.

This paper makes numerous changes to the LS
algorithm [SSN] and Co-parent LS algorithm [SSN2].
The new algorithm proposed here is called CTLS
(Colour Texture Link Shifting). We describe bellow
our new algorithm in full, and outline changes made
from CPLS [SSN2]. The main improvement was
changing the features used, from greyscale intensities
to colour and texture cues, which resulted in more
accurate merging of regions to produce results more
appealing to humans. This is due to the greater quantity
of information that is available when looking at an
image in 3 channels instead of one, and taking into
account the orientations and intensities of the edges
present when making a segmentation decision. We
have expanded upon the Student T-test between
greyscale (one dimensional) based regions to an RGB
(three dimensional) T-test based on differences
between corresponding channels within regions,
derived from means, deviations, and receptive field
sizes. All three channels between two candidate regions
must satisfy the test in order for them to be successfully
merged. In addition to the three channel based
comparison method, we add texture features to the
merging process which was derived from [AGBB].
Each pixel is represented by a histogram of edge
intensities divided into k bins, each of which is π/2k

 780

degrees in width. Edge intensities of each pixel are
calculated by 3x3 Laplacian edge masks and placed
into their corresponding bin according to their
orientation. Chi squared distributions of edge intensity
histograms of regions are also taken into consideration
when making a merging decision. A 95% confidence
interval is enforced when making linking decisions
based on edge intensity histograms. This texture based
decision carries equal weight compared to the colour
based decision in determining which child regions link
to which parents starting from the base level of the
pyramid.

Experiments were conducted on images from the
Berkeley image segmentation data set. Evaluating
segmentation quality in imagery is a subjective affair,
and not easily done. “The ill-defined nature of the
segmentation problem” [MMB] makes subjective
judgment the generally adopted method (existing
quantitative measurements are based on subjective
formulas). In general, it is not clear what a ‘good’
segmentation is [MMB]. Even though the Berkeley
data set provides human results that outline where
people think the general segmentation boundaries
should be, it does not label segments as being part of
the same object or not. Our algorithm provides both
outlines of the segmentation results and labels the
segments. The quality of the obtained segmentations
appears visually satisfying for at least one level in each
image. Our experiments are compared with several
measures in literature that have available
implementations and the results show that our method
is comparable to the best existing algorithms.

2. Pyramid Image Segmentation
Algorithm

Here we describe the proposed pyramid

segmentation algorithm. The input to the algorithm is a
colour, 3 channel (RGB) image of dimensions m x n
pixels, for m, n≥1. Let C(c, u) represent the colour
intensity of channel c, belonging to pixel u, where
c={R, G, B} or {1, 2, 3}, with C(c, u)∈ [0, 255]. The
output is the original image overlaid with the resultant
segmentations at each level. In the pseudo code and
discussion below, L is the level of the pyramid, L=0,
1 …, M, M = ()()⎡ ⎤nm,maxlog . The bottom level (L = 0)
is a matrix of m x n pixels, representing the original
image. Level L is a matrix with ⎡m/2L⎤ rows and ⎡n/2L⎤

columns, L = 0, 1, 2 … M. The top level M has one
element.

2.1 Creating the initial image pyramid at each
level

We describe and use the overlapping image pyramid
structure from [BHR], but applied to any image size.
Initially, the children of node [i, j, L] are: [i’,j’,L-
1]=[2i+e, 2j+f, L-1], for e,f ∈ {-1,0,1,2}. There are a
maximum of 16 children. That is, each {2i-1, 2i, 2i+1,
2i+2} can be paired with each {2j-1, 2j, 2j+1, 2j+2} to
produce the coordinates of the 16 children. For i=j=0
there are 9 children, and for i=0 and j>0 there are 12
children. There are also maximum index values (⎡m/2L-

1⎤, ⎡n/2L-1⎤) for any child at level L-1, which also
restricts the number of children close to the maximum
row and column values. For L= M there are four
children of single node [0, 0, M] on the top: [0, 0, M-1],
[0, 1, M-1], [1, 0, M-1], [1, 1, M-1] since the minimum
index is 0 and the maximum is 1 at level M-1. Two
neighbouring parents have overlapping initial children
allocations. Conversely, each child [i, j, L] for L<M has
4 candidate parent nodes (if they exist) [i”, j”,
L+1]=[(i+e)/2, (j+f)/2, L+1], for e,f∈{-1,1}, where
integer division is used (see Figure 1). Pixels at the
edges of the image have fewer parents to choose from.
The average intensity of all possible children is set as
the per channel initial intensity value of the parent v,
for nodes at levels L>0.

2.2 Texture comparison based on edge intensity
distributions

Laplacian intensities were calculated using 3x3
Sobel masks for each pixel. The orientations of each
pixel are calculated from its intensity in both directions.
Let P be the greyscale version of the input image,
determined by taking a weighted sampling of the red,
green and blue colour spaces: P=0.212671*R +
0.715160*G + 0.072169*B.

Let P(i, j) represent the value of the pixel at point
(i,j). Output edge orientation images X and Y in the x
and y directions respectively, are computed as follows:

() () ()

() () ()1,11,1,12
,121,11,1),(

++++−−++
+−−−++−−−=

jiPjiPjiP
jiPjiPjiPjiX

() () ()
() () ()1,11,21,1

1,11,21,1),(
++++++−+

+−+−−−−−−=
jiPjiPjiP

jiPjiPjiPjiY .

The image R(i, j) is called a Laplacian image, and is

defined as R(i, j)=sqrt(X(i, j)2 +Y(i, j)2). The result of
this operation is another greyscale image with a black
background and varying shades of white around the
edges of the objects in the image.

 781

Figure 1 – Bin Orientations

The orientation of each pixel R(i, j) in the Laplacian

image is found (in degrees) as
orientation(i,j)= π/180)),(),,(arctan(×jiXjiY .

The orientations are divided into 6 bins so that
similar orientations can be grouped together. The
whole orientation space (2π) is divided into 6 bins. The
division of the bins which places 00 or 900 at the border
of two bins poses problems since all vertical and
horizontal edges can fall into separate bins. We handle
this problem by shifting all off by 15 degrees. This bin
shifting technique was proposed in [S] in order to
improve clustering of similar bin orientations. To fit all
of the orientations into the 0-1800 range, we add 1800 if
the angle is < 00, and subtract 180 if the angle is >1800.
The effects of these transformations can be seen in
Figure 1.

Each pixel u in the original image, and each vertex u
at each level of the pyramid, was assigned a vector of
edge intensities B(b, u) (b= 1,2,…,6), where each field
b in the vector corresponds to an edge orientation bin.
At pixel level, B(b, u)= R(i, j) if orientation(i,j) is in
bin b, and =0 otherwise. As the image pyramid is
constructed, the edge intensity vectors of parent nodes
are maintained where each vector contains an average
intensity B(b, u) per bin of all children belonging to it
(calculation of averages is weighted by the size of
receptive fields, similarly as for colors).

2.3 Testing similarity of two regions,
unforced linking and the tie-breaking rule

Our algorithm makes use of a similar procedure to

that of [SSN] for comparing the similarity of two
regions, namely the receptive fields of a vertex u and
its candidate parent v. In [SSN], these two vertices are
similar (similar(u,v)=true) if their intensities are
roughly the same. Also in LS [SSN], a simple threshold
S=15 for testing similarity was used. They also used a
test for dissimilarity of two regions, to decide whether
or not the best parent is an acceptable link, for the
unforced linking option where a simple threshold based

comparison against threshold value D = 70 was used.
Since we have a 3D space, we use the Euclidian
distance between the points in RGB and define S’ and
D’ as follows: S’ = 96.513 2 =⋅ S and D’ =

24.1213 2 =⋅D .
In order to compute the similarity of edge

distributions for vertices u and v, we used a normalized
chi-squared distribution with a 95% confidence level
and 6 degrees of freedom. To compute dissimilarity,
the same distribution was compared to a confidence
value of 5%, which corresponds to a value of ≈10. Let
n(u) denote the number of pixels in the receptive fields
of u. We also use same notation C(c, u) to denote the
average color intensity of pixels in the receptive field
of node u.

The two comparison functions are formally defined
as follows.

Function dissimilar(u,v)

() ()()∑
=

−=
3

1

2,,
c

vcCucCColourDiff

() ()
() ()∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
6

1

2

,,
,,

b vbBubB
vbBubBBinsDiff

If ColourDiff > D’ Or BinsDiff > 10 then
disimilar=true else disimilar=false.

}
Function similar is defined via a statistical test

between receptive field distributions u and v when
possible. It resulted in better image segmentations, but
when an analogous improvement was attempted for the
function dissimilar there was no further improvement,
so only the simple version was used. In case receptive
fields exist with single pixels, and therefore variance
values of 0, the simple colour intensity difference test
was used with S’ = 51.96. Let n(u) denote the number
of pixels in the receptive fields of u. Note that n(u) is
used in calculating C(c, u) from the colour intensity
values of the children. For example, if w1, w2 and w3
are children of u and n(u) = n(w1) + n(w2) + n(w3), then

() () () () () () ()() ()
{ }3,2,1

,/,,,, 332211

∈
⋅+⋅+⋅=

c
unwnwcCwnwcCwnwcCucC

The intensity of the parent is the weighted sum of
intensities of its children. Let S(c, u), where c={R,G,B}
or {1,2,3}, denote the variances per channel of node u,
that is, the variances of pixel color intensities in its
receptive field.
Similar (u, v) {

If n(u) = 1 or n(v) = 1 {

() ()()∑
=

−=
3

1

2,,
c

vcCucCcolourDiff

 782

If colourDiff < S’ Then similar=true Else
similar=false}

Else {
Check = 0
For each channel c {

If n(u) <30 or n(v) <30

() ()
() () () ()

() () () ()⎟⎟⎠
⎞

⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+

−
=

vnunvnun
vcSvnucSun

vcCucC
test

11
2

,,

,,

Else
() ()
()
()

()
() ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
=

vn
vsS

un
usS

vcCucC
test

,,

,,

 If test > 2 then Check = check +1
}

() ()
() ()∑

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
6

1

2

,,
,,

b vbBubB
vbBubBBinsDiff

If check = 0 and BinsDiff < 2 then similar=true
Else similar=false}

}
Each vertex u is initially assigned a random number

r(u) in [0,1] which is never changed later on. Let w be a
child node that compares parent candidates u and v, and
let better(w, u, v) be one of u or v according to the
comparison. The function is as follows.

Function better(w, u, v)
 better=v;

If similar(w,u) and similar(w,v) then
{ if n(u)>n(v) or (n(u)=n(v) and r(u)>r(v))

then better=u }
else if distance(w,u)<distance(w,v) or

(distance(w,u)=distance(w,v) and
n(u)>n(v)) or
(distance(w,u)=distance(w,v) and
n(u)=n(v) and r(u)>r(v))

then better=u;
In our current implementation, the distance function

is defined as follows (same as ColourDiff above):
distance () ()()∑

=

−=
3

1

2,,
c

ucCwcC .

The function better normally selects the parent that
is closer to the child node, based on the distance
function, which is currently their Euclidian distance in
RGB space. However, if they are both close (that is,
similar) to the child node then the decision is made
based on the size of their receptive fields, which is used
as the secondary key in the comparison. If needed, the
random numbers are used as ternary, tie breaking key
for final arbitrage.

2.4 Candidate Parents

Among the candidate parents, each vertex at the

level below selects the one which the closest to it,
using the function better described above. For the first
iteration, each vertex has up to four candidate parents,
as per initial setup described by [BHR], and seen in
Figure 2 (a). This fixed set of candidate parents has
been changed (for further iterations) in our algorithm
by a dynamic flexible set of candidate nodes that
revolves around the current parent selection and the
parent selection of neighbouring vertices at the same
level. Suppose node w = [i, j, L] is currently linked to
parent u = [i”, j”, L + 1] in iteration t, which we will
denote simply by p(w) = u. The full notation would
lead to p[i, j, L][t]=[i”, j”, L + 1][t], and is convenient
for easy listing of candidate parents. One set of
candidate parents consists of the current parent and its
8 neighbours at the same level. Thus, in our notation,
the candidate parents for the next iteration are: [i”+ e,
j”+ f, L + 1], where e, f ∈ {-1, 0, 1}. This produces a
maximum of 9 candidate parents, which is a 3x3 grid
centered at the currently linked parent. Four additional
parent candidates were added by [SSN], by considering
the current selection (from the previous iteration) of
neighbouring vertices at the same level. This is
illustrated in Figure 2 (b). For w=[i, j, L] and iteration
t+1, we also consider p[i+1, j, L][t], p[i-1, j, L][t], p[i,
j+1, L][t], and p[i, j-1, L][t] as parent candidates, if
they exist. Both sets allow us to shift the parent further
away in the next iteration, and possibly link the current
child to a remote parent after the iterative process
stabilizes (with no more changes in the selected
parents). This parent selection procedure is directly
responsible for the ability of the algorithm to handle
elongated objects. Note that we consider a 5x5
candidate parent grid centered on the current parent
after half of the levels of the pyramid have been
traversed by our algorithm. The segmentation quality
was better than using 3x3 only or 5x5 only at all levels.
This change does not however adversely impact the
execution speed of the program since there are fewer
children at higher levels of the pyramid, and raising the
number of candidate parents from 13 to 29 does not
constitute a significant increase in run time of the
algorithm.

[SSN] introduced a concept called ‘co-parent’
identification in candidate parent selection. Its main
purpose is to unite similar segments early on in the
segmentation algorithm. Similarly, the co-parent of
parent u, at level L+1, denoted c(u), is a node at the
same level as u, is similar to u, and at least one child at
level L switched from u to c(u) at the end of a parent
selection iteration. Even if several co-parent candidates

 783

are available, at most one co-parent is selected by
picking the one with the largest receptive field (the
random number is used to break the tie if needed). Let
p(w) be the parent for node w at the end of the previous
iteration, and let p’(w) be the selected (possibly new)
parent of w after comparing 13 or 29 candidate parents.
The co-parent of u, denoted c(u), is calculated using the
function find-co-parent(u), who’s pseudo code is below.

Figure 2 - Simple parent selection (a). 9 + 4
parent selection (b)

Function find-co-parent(u) // returns c(u)
c(u)=-1 // co-parent of u does not initially exist
For each child w at level L Do { // p(w)=u

If p’(w) exists and p’(w) ≠ p(w) {
If similar(u, p’(w)) {

If c(u)=-1 or (similar(c(u), p’(w)) and
((n(p’(w))>n(c(u)) or (n(p’(w))=n(c(u))
and
r(p’(w))>r(c(u))))

 then c(u)=p’(w) } }}

Once the co-parents of each parent are found at level
L, each child tests its next iteration parent against the
co-parent of its current parent. The better one of these
two parents is selected as the next iteration parent.

2.5 Pyramid Segmentation

Once the pointers to parents have been initialized,

the segmentation procedure may begin. Parent
selections are attained at a given level (starting at level
0, and working toward the top of the pyramid) after a
maximum of T iterations, before the process advances
to the next level. At level L, each pixel initially points
to the closest among four parents from the initial
pyramid structure. In the subsequent iterations, it points
to the (temporary) parent which best suits it in layer
L+1, among the 9+4 or 25+4 candidate parents. This
temporary parent is then compared to one more
candidate, its co-parent, to yield the parent for the next
iteration. The best parent is then tested for possible
application of unforced linking based on dissimilarity.
At the end of each iteration, the intensities of the
parents in level L+1 are recalculated based on the

average intensity of the pixels in its current receptive
field. Since these averages are calculated from the
averages of its children, they must be appropriately
weighted (by the number of pixels in the receptive
fields of the children). Similarly the size of the
receptive field, and the variance of the pixel intensities,
are recalculated. Children that refused the link due to
unforced linking (unforced(w)=false) are not
considered in this calculation; however such children w
continue looking for a parent in the next iteration. In
case a child node has no current candidate parents, and
its parent from the previous iteration has an empty
receptive field, the child takes over that empty parent
and transfers its receptive field onto it. This cycle of
choosing parents, recalculating intensities, and
reassigning parents continues for T = 10 iterations per
pair of layers. The algorithm can be, at the top level,
described as follows.
For levels L = 0 to N-1 Do {

For each parent node u at level L+1 Do {
Calculate initial parent intensity values,
standard deviation, and receptive field size
using 4x4 overlapping areas and default
children. };

For each child node w in level L Do {
choose initial parent p(w) among 4
default parents in level L + 1.

If dissimilar(w, p(w)) Then unforced(w) =
false

Else unforced(w) =
true. };

For iter = 1 to T Do {
For each parent node v at level L+1 Do {

calculate new values for I(v), n(v), s(v)
based on children u with

p(u)=v and unforced(u)=true };
For each child w at level L Do {

select parent u among the 9+4 candidates
(for L < (N-1)/2, and 25+4 otherwise)
using method better (w, u, v) comparing
currently best parent u and a candidate v.
p’(w)= u /* temporary parent }

For each parent u at level L+1 Do {
find co-parents c(u) of u using function
find-co-parent (u). }

For each child w at level L Do {
p(w)= better(w, c(p(w)), p’(w)) /*
Compare p’(w) with co-parent c(p(w)) of
its parent p(w) from the previous iteration
to yield new parent p(w) for the next
iteration;
If dissimilar(w, p(w)) Then unforced(w)

= false
Else unforced(w) =

true. }

 784

}
}
Display segmentation for each level in pyramid.

3. Experimental Results

The algorithm presented here was designed to solve

the problem of correctly segmenting objects in images
within the framework of regular pyramid segmentation.
It works on various types of everyday imagery: both
colour and greyscale, although it was designed to take
advantage of colour images which give more
information with which to process the image. We have
tested our algorithm on images of from the Berkeley
image segmentation benchmark set, whose images are
generally of size 481 x 321 pixels. The processing time
per image is 35 seconds for the images on a single core
of a Pentium 2.66 GHz dual core machine,
implemented in C# on the Windows XP operating
system.

3.1 Segmentation Results

We compared our Colour Texture link shifting

(CTLS) algorithm to the algorithm proposed by
[AGBB], who also employ a type of hierarchical
segmentation structure but take into considerations
texture as well as colour. The other algorithm used for
comparison is the mean shift segmentation algorithm

[CM] implemented by [CGM] and named EDISON.
The human segmentation results of the images are also
shown. All of the tested approaches (including our own)
are relatively parameterless, or the parameters have
been set once, and remain consistent throughout testing
for all of the tested images. In the case of [AGBB,
CGM], their default settings were used in the
implementations found. We have also fixed parameter
values in our own implementation, as described in the
text. The test results of all the algorithms are seen in
Figure 3.

We show only the best level of segmentation of
each pyramid since they best reflect the desired
segmentation results for these images. The algorithms
shown here have tendencies either to oversegment or
undersegment images systematically, but sometimes
perform adequately according to human observations.
The algorithm of [CGM] tends to oversegment images,
and that of [AGBB] tends to undersegment them. Our
CTLS algorithm tends to sometimes over segment
areas that are textured. In has trouble with colour
gradients since they contain no edges, but instead a
gradual change in colour. Since our solution is
threshold based, it eventually cuts this seamless
gradient in peculiar locations. In the cases of coarsely
textured images, [AGBB] performs best. However,
based on this selection of images from [MFTM], the
algorithms are fairly competitive.

.

Original image human solution CTLS CGMA GBB

 785

Figure 3 – Sample images and segmentations

4. Future Work

The part of the algorithm that needs most

improvement is an automated selection of parameters
that would increase the quality of segmentation of any
general image. Currently some thresholds are set, but
they are not optimal for all images. The introduction of
a metric for self adjustment of parameters would be an
interesting research topic. Another addition to the
algorithm would involve finding better ways of joining
child and parent nodes in the mid-level part of the
pyramid. In the current scheme, pixels at the early
levels of segmentation have many parents to choose
from, and clusters are made fairly easily. However,
these parents that represent early clusters find
themselves relatively isolated with respect to the
number of neighbours they have in their immediate
vicinity. An adjustment needs to be introduced such
that isolated parent nodes on any level can expand their
search in order to be able to find neighbouring nodes
with non empty receptive fields. This would enable
their children to have a greater selection of parent
nodes, and would speed up the segment merging
process.

The algorithm can be modified in a variety of ways.
We have tested a variety of options for functions
dissimilar and distance, involving standard deviations,
but none of them improved the outcome. However,
there are other possible definitions for these functions
that could be tested.

The algorithm can also be modified to enforce
connectivity of receptive fields, either at the very end
(applying a connected components algorithm to
subdivide a region into connected pieces), or similarly
splitting parents during the parent selection process.

To improve the outcome of this segmentation
algorithm, one would have to have at least some prior
knowledge of the scene that is to be segmented. Such
knowledge includes the minimum possible segment
size, and possibly a range of pixel intensities within a
region that could be considered homogenous. Other
solutions may include considering more than just
greyscale intensities of input data. In the current
implementation, just the RGB layers are considered,
and they are combined into just a single layer greyscale
representation of the original image. By considering the
Euclidean distance between two 3D points in an RGB

space instead of simply considering greyscale
differences, more accurate parent selection could be
achieved at the expense of increased computation time.

We have used and experimented with the
overlapping image pyramid structure as originally
proposed in [BHR]. This refers to the fact that parent
vertices at level 1 have overlapping receptive fields.
Antonisse [A] already argued that perhaps a non-
overlapping structure could perform better. We left this
modification for further study, so that we can first
investigate the impact of a single major change
proposed here, the use of flexible parent links.

References

[A] H. Antonisse, Image Segmentation in Pyramids,
Computer Graphics & Image Processing, 19, 367-383, 1982.
[AGBB] S. Alpert, M. Galun, R. Basri, A. Brandt, Image
segmentation by probabilistic bottom-up aggregation and cue
integration, IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR-07), 2007.
[BHR] P. Burt, T. Hong, A. Rosenfeld, Segmentation and
estimation of image region properties through cooperative
hierarchical computation, IEEE Trans. Systems, Man, and
Cybernetics, Vol. 11, No. 12, 1981.
[CGM] C. Christoudias, B. Georgescu, and P. Meer,
Synergism in low level vision, Proc. Int’l Conf. Pattern
Recognition, vol. 4, pp. 150-156, 2002.
[CM] D. Comaniciu and P. Meer, Mean shift: A robust
approach toward feature space analysis, IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 24, pp. 603-619,
2002.
[MFTM] D. Martin and C. Fowlkes and D. Tal and J. Malik,
A Database of Human Segmented Natural Images and its
Application to Evaluating Segmentation Algorithms and
Measuring Ecological Statistics, Proc. 8th Int'l Conf.
Computer Vision (ICCV), Vol. 2, pp. 416-423, July 2001.
[MMB] R. Marfil, L. Molina-Tanco, A. Bandera, J.
Rodriguez, F. Sandoval, Pyramid segmentation algorithms
revisited, Pattern Recognition, Vol. 39, pp. 1430-1451, 2006.
[RH] E. Riseman, A. Hanson, Design of a semantically-
directed vision processor, Tech. Rep. 74C-1, Department of
Computer Information Science, University of Massachusetts,
Amherst, MA, 1974.
[S] M. Stojmenovic, Real time machine learning based car
detection in images with fast training, Machine Vision and

 786

Applications (Springer), Volume 17, Number 3, pp. 163-172,
August 2006.
[SSN] M. Stojmenovic, A. Solis-Montero, A. Nayak, Link
shifting based pyramid segmentation for elongated regions,
Int. Symposium on Signal Processing, Image Processing and
Pattern Recognition SIP 2009, Jeju Island, Korea, December

10~12, 2009, CCIS 61 (D. Slezak et al. eds.), Springer-
Verlag, 141-152, 2009.
[SSN2] M. Stojmenovic, A. Solis-Montero, A. Nayak, Co-
parent selection for fast region merging in pyramidal image
segmentation, submitted for publication, 2010.

