
CHAPTER 11

Algorithms for Real-Time Object Detection
in Images

MILOS STOJMENOVIC

11.1 INTRODUCTION

11.1.1 Overview of Computer Vision Applications

The field of Computer Vision (CV) is still in its infancy. It has many real-world
applications, and many breakthroughs are yet to be made. Most of the companies
in existence today that have products based on CV can be divided into three main
categories: auto manufacturing, computer circuit manufacturing, and face recognition.
There are other smaller categories of this field that are beginning to be developed
in industry such as pharmaceutical manufacturing applications and traffic control.
Auto manufacturing employs CV through the use of robots that put the cars together.
Computer circuit manufacturers use CV to visually check circuits in a production line
against a working template of that circuit. CV is used as quality control in this case. The
third most common application of CV is in face recognition. This field has become
popular in the last few years with the advent of more sophisticated and accurate
methods of facial recognition. Applications of this technology are used in security
situations like checking for hooligans at sporting events and identifying known thieves
and cheats in casinos. There is also the related field of biometrics where retinal
scans, fingerprint analysis, and other identification methods are conducted using CV
methods.

Traffic control is also of interest because CV software systems can be applied to
already existing hardware in this field. By traffic control, we mean the regulation
or overview of motor traffic by means of the already existing and functioning array
of police monitoring equipment. Cameras are already present at busy intersections,
highways, and other junctions for the purposes of regulating traffic, spotting problems,
and enforcing laws such as running red lights. CV could be used to make all of these
tasks automatic.

Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems
Edited by Amiya Nayak and Ivan Stojmenović Copyright © 2008 John Wiley & Sons, Inc.

315

316 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

11.2 MACHINE LEARNING IN IMAGE PROCESSING

AdaBoost and support vector machines (SVMs) are, among others, two very pop-
ular and conceptually similar machine learning tools for image processing. They
are both based on finding a set of hyperplanes to separate the sets of positive and
negative examples. Current image processing culture involving machine learning
for real-time performance almost exclusively uses AdaBoost instead of SVMs. Ad-
aBoost is easier to program and has proven itself to work well. There are very
few papers that deal with real-time detection using SVM principles. This makes
the AdaBoost approach a better choice for real-time applications. A number of
recent papers, using both AdaBoost and SVMs, confirm the same, and even ap-
ply a two-phase process. Most windows are processed in the first phase by Ad-
aBoost, and in the second phase, an SVM is used on difficult cases that could
not be easily eliminated by AdaBoost. This way, the real-time constraint remains
intact.

Le and Satoh [16] maintain that “The pure SVM has constant running time of 554
windows per second (WPS) regardless of complexity of the input image, the pure Ad-
aBoost (cascaded with 37 layers—5924 features) has running time of 640, 515 WPS.”
If a pure SVM approach was applied to our test set, it would take 17, 500, 000/554 ≈ 9
h of pure run time to test the 106 images. It would take roughly 2 min to process an
image of size 320× 240. Thus, Lee and Satoh [16] claim that cascaded AdaBoost is
1000 times faster than SVMs. A regular AdaBoost with 30 features was presented in
the works by Stojmenovic [24,25]. A cascaded design cannot speed up the described
version by more than 30 times. Thus, the program in the works by Stojmenovic [24,25]
is faster than SVM by over 1000/30 > 30 times.

Bartlett et al. [3] used both AdaBoost and SVMs for their face detection and facial
expression recognition system. Although they state that “AdaBoost is significantly
slower to train than SVMs,” they only use AdaBoost for face detection, and it is
based on Viola and Jones’ approach [27]. For the second phase, facial expression
recognition on detected faces, they use three approaches: AdaBoost, SVMs, and a
combined one (all applied on Gabor representation), and reported differences within
3 percent of each other. They gave a simple explanation for choosing AdaBoost in the
face detection phase, “The average number of features that need to be evaluated for
each window is very small, making the overall system very fast” [3]. Moreover, each of
these features is evaluated in constant time, because of integral image preprocessing.
That performance is hard to beat, and no other approach in image processing literature
for real-time detection is seriously considered now.

AdaBoost was proposed by Freund and Schapire [8]. The connection between
AdaBoost and SVMs was also discussed by them [9]. They even described two very
similar expressions for both of them, where the difference was that the Euclidean
norm was used by SVMs while the boosting process used Manhattan (city block) and
maximum difference norms. However, they also list several important differences.
Different norms may result in very different margins. A different approach is used
to efficiently search in high dimensional spaces. The computation requirements are
different. The computation involved in maximizing the margin is mathematical pro-

MACHINE LEARNING IN IMAGE PROCESSING 317

gramming, that is, maximizing a mathematical expression given a set of inequalities.
The difference between the two methods in this regard is that SVM corresponds to
quadratic programming, while AdaBoost corresponds only to linear programming
[9]. Quadratic programming is more computationally demanding than linear program-
ming [9].

AdaBoost is one of the approaches where a “weak” learning algorithm, which
performs just slightly better than random guessing, is “boosted” into an arbitrarily
accurate “strong” learning algorithm. If each weak hypothesis is slightly better than
random, then the training error drops exponentially fast [9]. Compared to other similar
learning algorithms, AdaBoost is adaptive to the error rates of the individual weak
hypotheses, while other approaches required that all weak hypotheses need to have
accuracies over a parameter threshold. It is proven [9] that AdaBoost is indeed a
boosting algorithm in the sense that it can efficiently convert a weak learning algorithm
into a strong learning algorithm (which can generate a hypothesis with an arbitrarily
low error rate, given sufficient data).

Freund and Schapire [8] state “Practically, AdaBoost has many advantages. It is
fast, simple, and easy to program. It has no parameters to tune (except for the number
of rounds). It requires no prior knowledge about the weak learner and so can be
flexibly combined with any method for finding weak hypotheses. Finally, it comes
with a set of theoretical guarantees given sufficient data and a weak learner that can
reliably provide only moderately accurate weak hypotheses. This is a shift in mind
set for the learning-system designer: instead of trying to design a learning algorithm
that is accurate over the entire space, we can instead focus on finding weak learning
algorithms that only need to be better than random. On the other hand, some caveats
are certainly in order. The actual performance of boosting on a particular problem is
clearly dependent on the data and the weak learner. Consistent with theory, boosting
can fail to perform well given insufficient data, overly complex weak hypotheses, or
weak hypotheses that are too weak. Boosting seems to be especially susceptible to
noise.”

Schapire and Singer [23] described several improvements to Freund and Schapire’s
[8] original AdaBoost algorithm, particularly in a setting in which hypotheses may
assign confidences to each of their predictions. More precisely, weak hypotheses can
have a range over all real numbers rather than the restricted range [−1,+1] assumed
by Freund and Schapire [8]. While essentially proposing a general fuzzy AdaBoost
training and testing procedure, Howe and Coworkers [11, 34] do not describe any spe- [Q1]

cific variant, with concrete fuzzy classification decisions. We propose in this chapter a
specific variant of fuzzy AdaBoost. Whereas Freund and Schapire [8] prescribe a spe-
cific choice of weights for each classifier, Schapire and Singer [23] leave this choice
unspecified, with various tunings. Extensions to multiclass classifications problems
are also discussed.

In practice, the domain of successful applications of AdaBoost in image processing
is any set of objects that are typically seen from the same angle and have a constant
orientation. AdaBoost can successfully be trained to identify any object if this object is
viewed from an angle similar to that in the training set. Practical real-world examples
that have been considered so far include faces, buildings, pedestrians, some animals,

318 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

and cars. The backbone of this research comes from the face detector work done by
Viola et al. [27]. All subsequent papers that use and improve upon AdaBoost are
inspired by it.

11.3 VIOLA AND JONES’ FACE DETECTOR

The face detector proposed by Viola and Jones [27] was the inspiration for all other
AdaBoost applications thereafter. It involves different stages of operation. The training
of the AdaBoost machine is the first part and the actual use of this machine is the
second part. Viola and Jones’ contributions come in the training and assembly of the
AdaBoost machine. They had three major contributions: integral images, combining
features to find faces in the detection process, and use of a cascaded decision process
when searching for faces in images. This machine for finding faces is called cascaded
AdaBoost by Viola and Jones [27]. Cascaded AdaBoost is a series of smaller AdaBoost
machines that together provide the same function as one large AdaBoost machine,
yet evaluate each subwindow more quickly, which results in real-time performance.
To understand cascaded AdaBoost, regular AdaBoost will have to be explained first.
The following sections will describe Viola and Jones’ face detector in detail.

Viola and Jones’ machine takes in a square region of size equal to or greater than
24× 24 pixels as input and determines whether the region is a face or is not a face.
This is the smallest size of window that can be declared a face according to Viola and
Jones. We use such a machine to analyze the entire image, as illustrated in Figure 11.1.
We pass every subwindow of every scale through this machine to find all subwindows
that contain faces. A sliding window technique is therefore used. The window is
shifted 1 pixel after every analysis of a subwindow. The subwindow grows in size
10 percent every time all of the subwindows of the previous size were exhaustively
searched. This means that the window size grows exponentially at a rate of (1.1)p,

FIGURE 11.1 Subwindows of an image.

VIOLA AND JONES’ FACE DETECTOR 319

where p is the number of scales. In this fashion, more than 90 percent of faces of all
sizes can be found in each image.

As with any other machine learning approach, the machine must be trained using
positive and negative examples. Viola and Jones used 5000 positive examples of
randomly found upright, forward-facing faces and 10,000 negative examples of any
other nonface objects as their training data. The machine was developed by trying to
find combinations of common attributes, or features of the positive training set that
are not present in the negative training set.

The library of positive object (head) representatives contains face pictures that
are concrete examples. That is, faces are cropped from larger images, and positive
examples are basically closeup portraits only. Moreover, positive images should be
of the same size (that is, when cut out of larger images, they need to be scaled so that
all positive images are of the same size). Furthermore, all images are frontal upright
faces. The method is not likely to work properly if the faces change orientation.

11.3.1 Features

An image feature is a function that maps an image into a number or a vector (array).
Viola and Jones [27] used only features that map images into numbers. Moreover, they
used some specific types of features, obtained by selecting several rectangles within
the training set, finding the sum of pixel intensities in each rectangle, assigning a
positive or negative sign and/or weight to each sum, and then summing them. The
pixel measurements used by Viola and Jones were the actual grayscale intensities of
pixels. If the areas of the dark (positive sign) and light (negative sign) regions are not
equal, the weight of the lesser region is raised. For example, feature 2.1 in Figure 11.2
has a twice greater light area than a dark one. The area of the dark rectangle in this case
would be multiplied by 2 to normalize the feature. The main problem is to find which
of these features, among the thousands available, would best distinguish positive and
negative examples, and how to combine them into a learning machine.

Figure 11.2 shows the set of basic shapes used by Viola and Jones [27]. Adding
features to the feature set can increase the accuracy of the AdaBoost machine at the
cost of additional training time. Each of the shapes seen in Figure 11.2 is scaled and
translated anywhere in the test images, consequently forming features. Therefore,
each feature includes a basic shape (as seen in Fig. 11.2), its translated position in the
image, and its scaling factors (height and width scaling). These features define the
separating ability between positive and negative sets. This phenomenon is illustrated
in Figure 11.3. Both of the features seen in Figure 11.3 (each defined by its position
and scaling factors) are derived from the basic shapes in Figure 11.2.

FIGURE 11.2 Basic shapes that generate features by translation and scaling.

320 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

FIGURE 11.3 First and second features in Viola and Jones face detection.

Figure 11.3 shows the first and second features selected by the program [27]. Why
are they selected? The first feature shows the difference in pixel measurements for
the eye area and area immediately below it. The “black” rectangle covering the eyes
is filled with predominantly darker pixels, whereas the area immediately beneath the
eyes is covered with lighter pixels. The second feature also concentrates on the eyes,
showing the contrast between two rectangles containing eyes and the area between
them. This feature corresponds to feature 2.1 in Figure 11.2 where the light and dark
areas are inverted. This is not a separate feature; it was drawn this way in Figure 11.3
to better depict the relatively constant number obtained by this feature when it is
evaluated in this region on each face.

11.3.2 Weak Classifiers (WCs)

A WC is a function of the form h(x, f, s, θ), where x is the tested subimage, f is the
feature used, s is the sign (+ or −), and θ is the threshold. The sign s defines on
what side of the threshold the positive examples are located. Threshold θ is used
to establish whether a given image passes a classifier test in the following fashion:
when feature f is evaluated on image x, the resulting number is compared to threshold
θ to determine how this image is categorized by the given feature. The equation is
given as sf (x)<sθ. If the equation evaluates true, the image is classified as positive.
The function h(x, f, s, θ) is then defined as follows: h(x, f, s, θ) = 1 if sf (x) < sθ

and 0 otherwise. This is expected to correspond to positive and negative examples,
respectively. There are a few ways to determine the threshold θ. In the following
example, the green numbers are considered to be the positive set, and the red letters
are considered to be the negative set. The threshold is set to be the black vertical line
after the “7” since at this location overall classification error is minimal. All of the
positions are tried, and the one with minimal error is selected. The error function that
is used is the number of misclassifications divided by the total number of examples.
The array of evaluated feature values is sorted by the values of f (x), and it shows
positive examples as 1, 2, 3, . . . in green and negatives as A, B, C, D, . . . in red. The
error of the threshold selected below is 3/17 ≈ 0.17.

VIOLA AND JONES’ FACE DETECTOR 321

In general, the threshold is found to be the value θ that best separates the positive
and negative sets. When a feature f is selected as a “good” distinguisher of images
between positive and negative sets, its value would be similar for images in the positive
set and different for all other images. When this feature is applied to an individual
image, a number f (x) is generated. It is expected that values f (x) for positive and
negative images can be separated by a threshold value of θ.

It is worthy to note that a single WC needs only to produce results that are slightly
better than chance to be useful. A combination of WCs is assembled to produce a
strong classifier as seen in the following text.

11.3.3 Strong Classifiers

A strong classifier is obtained by running the AdaBoost machine. It is a linear com-
bination of WCs. We assume that there are T WCs in a strong classifier, labelled
h1, h2, . . . , hT , and each of these comes with its own weight labeled α1, α2, . . . , αT .
Tested image x is passed through the succession of WCs h1(x), h2(x), . . . , hT (x), and
each WC assesses if the image passed its test. The assessments are discrete values:
hi(x) = 1 for a pass and hi(x) = 0 for a fail. αi(x) are in the range [0,+∞]. Note
that hi(x) = hi(x, fi, si, θi) is abbreviated here for convenience. The decision that
classifies an image as being positive or negative is made by the following inequality:

α1h1(x)+ α2h2(x)+ . . .+ αT hT (x) > α/2 where α =
T∑

i=1

αi.

From this equation, we see that images that pass a weighted average of half of the
WC tests are cataloged as positive. It is therefore a weighted voting of selected WCs.

11.3.4 AdaBoost: Meta Algorithm

In this section we explain the general principles of the AdaBoost (an abbreviation of
Adaptive Boosting) learning strategy [8]. First, a huge (possibly hundreds of thou-
sands) “panel” of experts is identified. Each expert, or WC, is a simple threshold-
based decision maker, which has a certain accuracy. The AdaBoost algorithm will
select a small panel of these experts, consisting of possibly hundreds of WCs, each
with a weight that corresponds to its contribution in the final decision. The expertise
of each WC is combined in a classifier so that more accurate experts carry more
weight.

The selection of WCs for a classifier is performed iteratively. First, the best WC
is selected, and its weight corresponds to its overall accuracy. Iteratively, the algo-
rithm identifies those records in the training data that the classifier built so far was
unable to capture. The weights of the misclassified records increase since it becomes
more important to correctly classify them. Each WC might be adjusted by chang-
ing its threshold to better reflect the new weights in the training set. Then a single
WC is selected, whose addition to the already selected WCs will make the greatest
contribution to improving the classifier’s accuracy. This process continues iteratively

322 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

until a satisfactory accuracy is achieved, or the limit for the number of selected WCs
is reached. The details of this process may differ in particular applications, or in
particular variants of the AdaBoost algorithm.

There exist several AdaBoost implementations that are freely available in
Weka (Java-based package http://www.cs.waikato.ac.nz/ml) and in R (http://www.r-
project.org). Commercial data mining toolkits that implement AdaBoost include
TreeNet, Statistica, and Virtual Predict. We did not use any of these packages for
two main reasons. First, our goal was to achieve real-time performance, which re-
stricted the choice of programming languages. Next, we have modified the general
algorithm to better suit our needs, which required us to code it from scratch.

AdaBoost is a general scheme adaptable to many classifying tasks. Little is as-
sumed about the learners (WCs) used. They should merely perform only a little better
than random guesses in terms of error rates. If each WC is always better than a chance,
then AdaBoost can be proven to converge to a perfectly accurate classifier (no train-
ing error). Boosting can fail to perform if there is insufficient data or if WCs are
overly complex. It is also susceptible to noise. Even when the same problem is being
solved by different people applying AdaBoost, the performance greatly depends on
the training set being selected and the choice of WCs (that is, features).

In the next subsection, the details of the AdaBoost training algorithm, as used by
Viola and Jones [27], will be given. In this approach, positive and negative training
sets are separated by a cascade of classifiers, each constructed by AdaBoost. Real
time performance is achieved by selecting features that can be computed in constant
time. The training time of the face detector appears to be slow, even taking months
according to some reports. Viola and Jones’ face finding system has been modified
in literature in a number of articles. The AdaBoost machine itself was modified in
literature in several ways.

11.3.5 AdaBoost Training Algorithm

We now show how to create a classifier with the AdaBoost machine. It follows the
algorithm given in the work by Viola and Jones [27]. The machine is given images
(x1, y1), . . . , (xq, yq) as input, where yi = 1 or 0 for positive and negative examples,
respectively. In iteration t, the ith image is assigned the weight w(t, i), which corre-
sponds to the importance of that image for a good classification. The initial weights are
w(1, i) = 1/(2p), 1/(2n), for yi = 0 or 1, respectively, where n and p are the numbers
of negatives and positives, respectively, q = p+ n. That is, all positive images have
equal weight, totaling 1

2 , and similarly for all negative images. The algorithm will
select, in step t, the tth feature f, its threshold value θ, and its direction of inequality
s(s = 1 or − 1). The classification function is h(x, f, s, θ) = 1 (declared positive) if
sf (x)<sθ, and 0 otherwise (declared negative).

The expression |h(xi, f, s, θ)− yi| indicates whether or not h(x, f, s, θ) correctly
classified image xi. Its value is 0 for correct classification, and 1 for incorrect clas-
sification. The sum

∑N
i=1 w(t, i)× |h(xi, f, s, θ)− yi| then represents the weighted

misclassification error when using h(x, f, s, θ) as the feature-based classifier. The
goal is to minimize that sum when selecting the next WC.

VIOLA AND JONES’ FACE DETECTOR 323

We revisit the classification of numbers and letters example to illustrate the as-
signment of weights in the training procedure. We assume that feature 1 classifies the
example set in the order seen below. The threshold is chosen to be just after the “7”
since this position minimizes the classification error. We will call the combination of
feature 1 with its threshold WC 1. We notice that “I”, “9,” and “2” were incorrectly
classified. The number of incorrect classifications determines the weight α1 of this
classifier. The fewer errors that it makes, the heavier the weight it is awarded.

The weights of the incorrectly classified examples (I, 9, and 2) are increased before
finding the next feature in an attempt to find a feature that can better classify cases
that are not easily sorted by previous features. We assume that feature two orders the
example set as seen below.

Setting the threshold just after the “2” minimizes the error in classification. We
notice that this classifier makes more mistakes in classification than its predecessor.
This means that its weight, α2, will be less that α1. The weights for elements “E”, “I,”
“8,” and “4” are increased. These are the elements that were incorrectly classified by
WC 2. The actual training algorithm will be described in pseudocode below.

For t=1 to T do:

Normalize the weights w(t, i), by dividing each of them with their sum (so that
the new sum of all weights becomes 1);

swp← sum of weights of all positive images
swn← sum of weights of all negative images
(* note that swp+ swn = 1 *)

FOR each candidate feature f, find f (xi) and w(t, i)∗f (xi), i = 1, . . . , q.

- Consider records (f (xi), yi, w(t, i)). Sort these records by the f (xi) field
with mergesort, in increasing order. Let the obtained array of the f (xi)
field be g1, g2, . . . , gq. The corresponding records are (gj, status(j), w′(j)) =
(f (xi), yi, w(t, i)), where gj = f (xi). That is, if the jth element gj is equal to ith
element from the original array f (xi) then status(j) = yi and w′(j) = w(t, i).

(*Scan through the sorted list, looking for threshold θ and direction s that mini-
mizes the error e(f, s, θ)∗)

sp← 0; sn← 0; (*weight sums for positives/negatives below a considered
threshold *)

emin← minimal total weighted classification error
If swn<swp then {emin← swn; smin← 1; θmin← gn + 1 (*all declared

positive*)

324 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

else { emin← swp; smin← 1; θmin← g1 − 1 } (*all declared negative
*)

For j← 1 to q-1 do {
If status(j) = 1 then sp← sp+ w′(j) else sn← sn+ w′(j)
θ← (gj + gj+1)/2
If sp+ swn− sn<emin then {emin← sp+ swn− sp; smin←
−1; θmin← θ }
If sn+ swp− sp<emin then {emin← sn+ swp− sp; smin← 1; θmin←
θ } }

EndFOR

Set st ← smin; set θt ← θmin(*s and θ of current stage are determined*)
βt ← emin/(1− emin);
αT ←−log(βt) (* αT is the output of AdaBoost for the second part*)

Update the weights for the next weak classifier, if needed:

w(t+ 1, i)←w(t, i)β1−e
t , where e=

{
0 if xiis correctly classified bycurrent ht
1otherwise

}

EndFor;

AdaBoost therefore assigns large weights with each good classification and small
weights with each poor function. The selection of the next feature depends on selec-
tions made for previous features.

11.3.6 Cascaded AdaBoost

Viola and Jones [27] also described the option of designing a cascaded AdaBoost.
For example, instead of one AdaBoost machine with 100 classifiers, one could design
10 such machines with 10 classifiers in each. In terms of precision, there will not be
much difference, but testing for most images will be faster [27]. One particular image
is first tested on the first classifier. If declared as nonsimilar, it is not tested further. If
it cannot be rejected, then it is tested with the second machine. This process continues
until either one machine rejects an image, or all machines “approve” it, and similarity
is confirmed. Figure 11.4 illustrates this process. Each classifier seen in Figure 11.4
comprises one or more features. The features that define a classifier are chosen so
that their combination eliminates as much as possible all negative images that are

FIGURE 11.4 Cascaded decision process.

VIOLA AND JONES’ FACE DETECTOR 325

FIGURE 11.5 Concept of a classifier.

passed through this classifier, while at the same time accepting nearly 100 percent of
the positives. It is desirable that each classifier eliminates at least 50 percent of the
remaining negatives in the test set. A geometric progression of elimination is created
until a desired threshold of classification is attained. The number of features in each
classifier varies. It typically increases with the number of classifiers added. In Viola
and Jones’ face finder cascade, the first classifiers had 2, 10, 25, 25, and 50 features,
respectively. The number of features grew very rapidly afterward. Typical numbers
of features per classifier ranged in the hundreds. The total number of features used
was roughly 6000 in Viola and Jones’ application.

Figure 11.5 will help explain the design procedure of the cascaded design process.
We revisit the letters and numbers example in our efforts to show the development
of a strong classifier in the cascaded design. At the stage seen in Figure 11.5, we
assume to have two WCs with weights α1 and α2. Together these two WCs make a
conceptual hyperplane depicted by the solid dark blue line. In actuality, this line is not
a hyperplane (in this case a line in two-dimensional space), but a series of orthonormal
dividers. It is, however, conceptually easier to explain the design of a strong classifier
in a cascade if we assume that WCs form hyperplanes.

So far in Figure 11.5, we have two WCs where the decision inequality would be
of the form α1h1(x)+ α2h2(x) > α/2, where α = α1 + α2. At this stage, the combi-
nation of the two WCs would be checked against the training set to see if they have a
99 percent detection rate (this 99 percent is a design parameter). If the detection rate
is below the desired level, the threshold α/2 is replaced with another threshold γ such
that the detection rate increases to the desired level. This has the conceptual effect of
translating the dark blue hyperplane in Figure 11.5 to the dotted line. This also has
a residual effect of increasing the false positive rate. At the same time, once we are
happy with the detection rate, we check the false positive rate of the shifted threshold
detector. If this rate is satisfactory, for example, below 50 percent (also a design pa-
rameter), then the construction of the classifier is completed. The negative examples
that were correctly identified by this classifier are ignored from further consideration
by future classifiers. There is no need to consider them if they are already success-

326 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

fully eliminated by a previous classifier. In Figure 11.5, “D”, “C,” and “F” would be
eliminated from future consideration if the classifier construction were completed at
this point.

11.3.7 Integral Images

One of the key contributions in the work by Viola and Jones [27] (which is used and/or
modified by Levi and Weiss [17], Luo et al. [19], etc.) is the introduction of a new
image representation called the “integral image,” which allows the features used by
their detector to be computed very quickly.

In the preprocessing step, Viola and Jones [27] find the sums ii(a, b) of pixel
intensities i(a′, b′) for all pixels (a′, b′) such that a′ ≤ a, b′ ≤ b. This can be done in
one pass over the original image using the following recurrences:

s(a, b) = s(a, b− 1)+ i(a, b),

ii(a, b) = ii(a− 1, b)+ s(a, b),

where s(a, b) is the cumulative row sum, s(a,−1) = 0, and ii(−1, b) = 0. In prefix
sum notation, the expression for calculating the integral image values is

ii(a, b) =
∑

a′≤a,b′≤b

i(a′, b′).

Figure 11.6 shows an example of how the “area” for rectangle “D” can be cal-
culated using only four operations. Let the area mean the sum of pixel intensities
of a rectangular region. The preprocessing step would have found the values of cor-
ners 1, 2, 3, and 4, which are in effect the areas of rectangles A, A+ B, A+ C, and
A+ B + C +D, respectively. Then the area of rectangle D is= (A+ B + C +D)+

FIGURE 11.6 Integral image.

CAR DETECTION 327

(A)− (A+ B)− (A+ C) = “4” + “1” − “2” − “3”. Jones and Viola [12] built one
face detector for each view of the face. A decision tree is then trained to determine
the viewpoint class (such as right profile or rotated 60 degrees) for a given window
of the image being examined. The appropriate detector for that viewpoint can then
be run instead of running all of the detectors on all windows.

11.4 CAR DETECTION

The most popular example of object detection is the detection of faces. The funda-
mental application that gave credibility to AdaBoost was Viola and Jones’ real-time
face finding system [27]. AdaBoost is the concrete machine learning method that was
used by Viola and Jones to implement the system. The car detection application was
inspired by the work of Viola and Jones. It is based on the same AdaBoost principles,
but a variety of things, both in testing and in training, were adapted and enhanced to
suit the needs of the CV system described in the works by Stojmenovic [24,25]. The
goal of this chapter is to analyze the capability of current machine learning techniques
of solving similar image retrieval problems. The “capability” of the system includes
real-time performance, a high detection rate, low false positive rate, and learning with
a small training set. Of particular interest are cases where the training set is not easily
available, and most of it needs to be manually created.

As a particular case study, we will see the application of machine learning to the
detection of rears of cars in images [24,25]. Specifically, the system is able to recognize
cars of a certain type such as a Honda Accord 2004. While Hondas have been used
as an instance, the same program, by just replacing the training sets, could be used to
recognize other types of cars. Therefore, the input should be an arbitrary image, and
the output should be that same image with a rectangle around any occurrence of the
car we are searching for (see Fig. 11.7). The system will work by directly searching
for an occurrence of the positive in the image, while treating all subwindows of the
image the same way. It will not first search for a general vehicle class and then specify
the model of the vehicle. This is a different and much more complicated task that is not
easily solvable by machine learning. Any occurrence of a rectangle around a part of
the image that is not a rear of a Honda Accord 2004 is considered a negative detection.

The image size in the testing set is arbitrary, while the image sizes in both the
negative and positive training sets are the same. Positive training examples are the
rears of Hondas. The data set was collected by taking pictures of Hondas (about

FIGURE 11.7 Input and output of the testing procedure.

328 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

300 of them) and other cars. The training set was actually manually produced by
cropping and scaling positives from images to a standard size. Negative examples
in the training set include any picture, of the same fixed size, that cannot be consid-
ered as a rear of a Honda. This includes other types of cars, as close negatives, for
improving the classifier’s accuracy. Thus, a single picture of a larger size contains
thousands of negatives. When a given rectangle around a rear of a Honda is slightly
translated and scaled, one may still obtain a positive example, visually and even by
the classifier. That is, a classifier typically draws several rectangles at the back of each
Honda. This is handled by a separate procedure that is outside the machine learning
framework.

In addition to precision of detection, the second major main goal of the system was
real-time performance. The program should quickly find all the cars of the given type
and position in an image, in the same way that Viola and Jones finds all the heads.
The definition of “real time” depends on the application, but generally speaking the
system delivers an answer for testing an image within a second. The response time
depends on the size of the tested image, thus what appears to be real-time for smaller
images may not be so for larger ones.

Finally, this object detection system is interesting since it is based on a small
number of training examples. Such criteria are important in cases where training
examples are not easily available. For instance, in the works by Stojmenovic [24,25],
photos of back views of a few hundred Honda Accords and other cars were taken
manually to create training sets, since virtually no positive images were found on the
Internet. In such cases, it is difficult to expect that one can have tens of thousands
of images readily available, which was the case for the face detection problem. The
additional benefit of a small training set is that the training time is reduced. This
enabled us to perform a number of training attempts, adjust the set of examples,
adjust the set of features, test various sets of WCs, and otherwise analyze the process
by observing the behavior of the generated classifiers.

11.4.1 Limitations and Generalizations of Car Detection

Machine learning methods were applied in the work by Stojmenovic [24] in an attempt
to solve the problem of detecting rears of a particular car type since they appear to
be appropriate given the setting of the problem. Machine learning in similar image
retrieval has proven to be reliable in situations where the target object does not change
orientation. As in the work of Viola and Jones [27], cars are typically found in the
same orientation with respect to the road. The situation Stojmenovic [24] is interested
in is the rear view of cars. This situation is typically used in monitoring traffic since
license plates are universally found at the rears of vehicles.

The positive images were taken such that all of the Hondas have the same general
orthogonal orientation with respect to the camera. Some deviation occurred in the
pitch, yaw, and roll of these images, which might be why the resulting detector has
such a wide range of effectiveness. The machine that was built is effective for the
following deviations in angles: pitch −15◦; yaw −30◦ to 30◦; and roll −15◦ to 15◦.
This means that pictures of Hondas taken from angles that are off by the stated amounts

CAR DETECTION 329

are still detected by the program. Yaw, pitch, and roll are common jargon in aviation
describing the three degrees of freedom the pilot has to maneuver an aircraft.

Machine learning concepts in the CV field that deal with retrieving similar objects
within images are generally faced with the same limitations and constraints. All
successful real-time applications in this field have been limited to successfully finding
objects from only one view and one orientation that generally does not vary much.
There have been attempts to combine several strong classifiers into one machine, but
discussing only individual strong classifiers, we conclude that they are all sensitive to
variations in viewing angle. This limits their effective range of real-world applications
to things that are generally seen in the same orientation. Typical applications include
faces, cars, paintings, posters, chairs, some animals, and so on. The generalization
of such techniques to problems that deal with widely varying orientations is possible
only if the real-time performance constraint is lifted. Another problem that current
approaches are faced with is the size of the training sets. It is difficult to construct a
sufficiently large training database for rare objects.

11.4.2 Fast AdaBoost Based on a Small Training Set for Car Detection

This section describes the contributions and system [24] for detecting cars in real time.
Stojmenovic [24] has revised the AdaBoost-based learning environment, for use in
their object recognition problem. It is based on some of the ideas from literature, and
some new ideas, all combined into a new machine.

The feature set used in the work Stajmenovic [24,25] initially included most of the
feature types used by Viola and Jones [27] and Lienhart [14]. The set did not include
rotated features [14], since the report on their usefulness was not convincing. Edge
orientation histogram (EOH)-based features [17] were considered a valuable addition
and were included in the set. New features that resemble the object being searched
for, that is, custom-made features, were also added.

Viola and Jones [27] and most followers used weight-based AdaBoost, where the
training examples receive weights based on their importance for selecting the next
WC, and all WCs are consequently retrained in order to choose the next best one.
Stojmenovic [24,25] states that it is better to rely on the Fast AdaBoost variant [30],
where all of the WCs are trained exactly once, at the beginning. Instead of the weighted
error calculation, Stojmenovic [24] believes that it is better to select the next WC to
be added as the one that, when added, will make the best contribution (measured as
the number of corrections made) to the already selected WCs. Each selected WC will
still have an associated weight that depends on its accuracy. The reason for selecting
the Fast AdaBoost variant is to achieve an O(log q) time speed-up in the training
process, believing that the lack of weights for training examples can be compensated
for by other “tricks” that were applied to the system.

Stojmenovic [24,25] has also considered a change in the AdaBoost logic itself. In
existing logic, each WC returns a binary decision (0 or 1) and can therefore be referred
to as the binary WC. In the machine proposed by Schapire and Singer [23], each WC
will return a number in the range [−1, 1] instead of returning a binary decision (0 or 1),
after evaluating the corresponding example. Such a WC will be referred to as a fuzzy

330 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

FIGURE 11.8 Positive training examples.

WC. Evaluation of critical cases is often done by a small margin of difference from
the threshold. Although the binary WC may not be quite certain about evaluating
a particular feature against the adopted threshold (which itself is also determined
heuristically, therefore is not fully accurate), the current AdaBoost machine assigns the
full weight to the decision on the corresponding WC. Stojmenovic [24,25] therefore
described an AdaBoost machine based on a fuzzy WC. More precisely, the described
system proposes a specific function for making decisions, while Schapire [23] left
this choice unspecified. The system produces a “doubly weighted” decision. Each
WC receives a corresponding weight α, then each decision is made in the interval
[−1, 1]. The WC then returns the product of the two numbers, that is, a number in
the interval [−α, α] as its “recommendation.” The sum of all recommendations is
then considered. If positive, the majority opinion is that the example is a positive one.
Otherwise, the example is a negative one.

11.4.3 Generating the Training Set

All positives in the training set were fixed to be 100× 50 pixels in size. The entire
rear view of the car is captured in this window. Examples of positives are seen in
Figure 11.8. The width of a Honda Accord 2004 is 1814 mm. Therefore, each pixel
in each training image represents roughly 1814/100 = 18.14 mm of the car.

A window of this size was chosen due to the fact that a typical Honda is unrec-
ognizable to the human eye at lower resolutions; therefore, a computer would find it
impossible to identify accurately. Viola and Jones used similar logic in determining
their training example dimensions. All positives in the training set were photographed
at a distance of a few meters from the camera. Detected false positives were added
in the negative training set (bootstrapping), in addition to a set of manually selected
examples, which included backs of other car models. The negative set of examples
perhaps has an even bigger impact on the training procedure than the positive set. All
of the positive examples look similar to the human eye. It is therefore not important
to overfill the positive set since all of the examples there should look rather similar.
The negative set should ideally combine a large variety of different images. The neg-
ative images should vary with respect to their colors, shapes, and edge quantities and
orientations.

11.4.4 Reducing Training Time by Selecting a Subset of Features

Viola and Jones’ faces were 24× 24 pixels each. Car training examples are 100× 50
pixels each. The implications of having such large training examples are immense
from a memory consumption point of view. Each basic feature can be scaled in both
height and width, and can be translated around each image. There are seven basic

CAR DETECTION 331

features used by Viola and Jones. They generated a total of 180,000 WCs [27]. Stoj-
menovic [24,25] also used seven basic features (as described below), and they generate
a total of approximately 6.5 million WCs! Each feature is shifted to each position in
the image and for every vertical and horizontal scale. By shifting our features by 2
pixels in each direction (instead of 1) and making scale increments of 2 during the
training procedure, we were able to cut this number down to approximately 530,000,
since every second position and scale of feature was used. In the initial training of
the WCs, each WC is evaluated based on its cumulative error of classification (CE).
The cumulative error of a classifier is CE = (false positives + number of missed
examples)/total number of examples. WCs that had a CE that was greater than a
predetermined threshold were automatically eliminated from further consideration.
Details are given in the works by Stojmenovic [24,25].

11.4.5 Features Used in Training for Car Detection

Levi and Weiss [17] stress the importance of using the right features to decrease the
sizes of the training sets, and increase the efficiency of training. A good feature is the
one that separates the positive and negative training sets well. The same ideology is
applied here in hopes of saving time in the training process. Initially, all of Viola and
Jones’ features were used in combination with the dominant edge orientation features
proposed by Levi and Weiss [17] and the redness features proposed by Luo et al. [19].
It was determined that the training procedure never selected any of Viola and Jones’
grayscale features to be in the strong classifier at the end of training. This is a direct
consequence of the selected positive set. Hondas come in a variety of colors and these
colors are habitually in the same relative locations in each positive case. The most
obvious example is the characteristic red tail lights of the Honda accord. The redness
features were included specifically to be able to use the redness of the tail lights as
a WC. The training algorithm immediately exploited this distinguishing feature and
chose the red rectangle around one of the tail lights as one of the first WCs in the
strong classifier. The fact that the body of the Honda accord comes in its own subset
of colors presented problems to the grayscale set of Viola and Jones’ features. When
these body colors are converted to a grayscale space, they basically cover the entire
space. No adequate threshold can be chosen to beneficially separate positives from
negatives. Subsequently, all of Viola and Jones’ features were removed due to their
inefficiency.

The redness features we refer to are taken from the work of Luo et al. [19]. More
details are given in the works by Stojmenovic [24,25]. Several dominant edge orien-
tation features were used in the training algorithm. To get a clearer idea of what edge
orientation features are, we will first describe how they are made. Just as their name
suggests, they arise from the orientation of the edges of an image. A Sobel gradient
mask is a matrix used in determining the location of edges in an image. A typical
mask of this sort is of size 3× 3 pixels. It has two configurations, one for finding
edges in the x-direction and the other for finding edges in the y-direction of source
images ([7], p. 165). These two matrices, hx and hy (shown in Figs. 11.9 and 11.10),
are known as the Sobel kernels.

332 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

FIGURE 11.9 Kernel hy. FIGURE 11.10 Kernel hx.

Figure 11.9 shows the typical Sobel kernel for determining vertical edges (y-
direction), and Figure 11.10 shows the kernel used for determining horizontal edges
(x-direction). Each of these kernels is placed over every pixel in the image. Let
P be the grayscale version of the input image. Grayscale images are determined
from RGB color images by taking a weighted sampling of the red, green, and blue
color spaces. The value of each pixel in a grayscale image was found by con-
sidering its corresponding color input intensities, and applying the following for-
mula: 0.212671× R+ 0.715160×G+ 0.072169× B, which is a built in function
in OpenCV, which was used in the implementation.

Let P(x, y) represent the value of the pixel at point (x, y) and I(x, y) is a 3× 3
matrix of pixels centered at (x, y). Let X and Y represent output edge orientation
images in the x and y directions, respectively. X and Y are computed as follows:

X(i, j) = hx · I(i, j) = −P(i− 1, j − 1)+ P(i+ 1, j − 1)− 2P(i− 1, j)
+2P(i+ 1, j)− P(i− 1, j + 1)+ P(i+ 1, j + 1),

Y (i, j) = hy · I(i, j) = −P(i− 1, j − 1)− 2P(i, j − 1)− P(i+ 1, j − 1)
+P(i− 1, j + 1)+ 2P(i, j + 1)+ P(i+ 1, j + 1)

A Sobel gradient mask was applied to each image to find the edges of that im-
age. Actually, a Sobel gradient mask was applied both in the x-dimension, called
X(i, j), and in the y-dimension, called Y (i, j). A third image, called R(i, j), of
the same dimensions as X, Y, and the original image, was generated such that
R(i, j) =

√
X(i, j)2 + Y (i, j)2. The result of this operation is another grayscale im-

age with a black background and varying shades of white around the edges of the
objects in the image. The image R(i, j) is called a Laplacian image in image process-
ing literature, and values R(i, j) are called Laplacian intensities. One more detail of
our implementation is the threshold that was placed on the intensities of the Laplacian
values. We used a threshold of 80 to eliminate the faint edges that are not useful. A
similar threshold was employed in the work by Levi and Weiss [17].

The orientations of each pixel are calculated from the X(i, j) and Y (i, j) images.
The orientation of each pixel R(i, j) in the Laplacian image is found as

orientation(i,j) = arctan(Y(i,j), X(i,j))× 180/π.

This formula gives the orientation of each pixel in degrees. The orientations are
divided into six bins so that similar orientations can be grouped together. The whole
circle is divided into six bins. Bin shifting (rotation of all bins by 15◦) is applied

NEW FEATURES AND APPLICATIONS 333

to better capture horizontal and vertical edges. Details are given in the work by
Stojmenovic [24].

11.5 NEW FEATURES AND APPLICATIONS

11.5.1 Rotated Features and Postoptimization

Lienhart and Maydt [14] add a set of classifiers (Haar wavelets) to those already
proposed by Viola and Jones. Their new classifiers are the same as those pro-
posed by Viola and Jones, but they are all rotated 45◦. They claim to gain a
10 percent improvement in the false detection rate at any given hit rate when
detecting faces. The features used by Lienhart were basically Viola and Jones’
entire set rotated 45◦ counterclockwise. He added two new features that resem-
bled the ones used by Viola and Jones, but they too failed to produce notable
gains.

However, there is a postoptimization stage involved with the training process. This
postoptimization stage is credited with over 90 percent of the improvements claimed
by this paper. Therefore, the manipulation of features did not impact the results all
that much; rather the manipulation of the weights assigned to the neural network at
the end of each stage of training is the source of gains. OpenCV supports the integral
image function on 45◦ rotated images since Lienhart was on the development team
for OpenCV.

11.5.2 Detecting Pedestrians

Viola et al. [29] propose a system that finds pedestrians in motion and still images.
Their system is based on the AdaBoost framework. It considers both motion infor-
mation and appearance information. In the motion video pedestrian finding system,
they train AdaBoost on pairs of successive frames of people walking. The intensity
differences between pairs of successive images are taken as positive examples. They
find the direction of motion between two successive frames, and also try to establish
if the moving object can be a person. If single images are analyzed for pedestrians, no
motion information is available, and just the regular implementation of AdaBoost seen
for faces is applied to pedestrians. Individual pedestrians are taken as positive training
examples. It does not work as well as the system that considers motion information
since the pedestrians are relatively small in the still pictures, and also relatively low
resolution (not easily distinguishable, even by humans). AdaBoost is easily confused
in such situations. Their results suggest that the motion analysis system works better
than the still image recognizer. Still, both systems are relatively inaccurate and have
high false positive rates.

11.5.3 Detecting Penguins

Burghardt et al. [5] apply the AdaBoost machine to the detection of African penguins.
These penguins have a unique chest pattern that AdaBoost can be trained on. They

334 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

were able to identify not only penguins in images, but distinguish between individual
penguins as well. Their database of penguins was small and taken from the local
zoo. Lienhart’s [14] adaptation of AdaBoost was used with the addition of an extra
feature: the empty kernel. The empty kernel is not a combination of light and dark
areas, but rather only a light area so that AdaBoost may be trained on “pure luminance
information.” AdaBoost was used to find the chests of penguins, and other methods
were used to distinguish between different penguins. Their technique did not work
very well for all penguins. They gave no statistics concerning how well their approach
works. This is another example of how the applications of AdaBoost are limited to
very specialized problems.

11.5.4 Redeye Detection: Color-Based Feature Calculation

Luo et al. [19] introduce an automatic redeye detection and correction algorithm
that uses machine learning in the detection of red eyes. They use an adapta-
tion of AdaBoost in the detection phase of redeye instances. Several novelties
are introduced in the machine learning process. The authors used, in combina-
tion with existing features, color information along with aspect ratios (width to
height) of regions of interest as trainable features in their AdaBoost implementa-
tion.

Viola and Jones [27] used only grayscale intensities, although their solution to face
detection could have used color information. Finding red eyes in photos means literally
finding red oval regions, which absolutely requires the recognition of color. Another
unique addition in their work is a set of new features similar to those proposed by
Viola and Jones [27], yet designed specifically to easily recognize circular areas. We
see these feature templates in Figure 11.11. It is noticeable that the feature templates
presented in this figure have three distinct colors: white, black, and gray. The gray
and black regions are taken into consideration when feature values are calculated.
Each of the shapes seen in Figure 11.11 is rotated around itself or reflected creating
eight different positions. The feature value of each of the eight positions is calculated,
and the minimum and maximum of these results are taken as output from the feature
calculation.

The actual calculations are performed based on the RGB color space. The pixel
values are transformed into a one-dimensional space before the feature values are
calculated in the following way: Redness= 4R− 3G+ B. This color space is biased
toward the red spectrum (which is where red eyes occur). This redness feature was
used in the car detection system [24].

FIGURE 11.11 Features for redeye detection.

NEW FEATURES AND APPLICATIONS 335

11.5.5 EOH-Based Features

Levi and Weiss [17] add a new perspective on the training features proposed by
Viola and Jones [27]. They also detect upright, forward-facing faces. Among other
contributions in their work [17], their most striking revelation was adding an edge
orientation feature that the machine can be trained on. They also experimented with
mean intensity features, which means taking the average pixel intensity in a rect-
angular area. These features did not produce good results in their experiments and
were not used in their system. In addition to the features used by Viola and Jones
[27], which considered sums of pixel intensities, Levi and Weiss [17] create fea-
tures based on the most prevalent orientation of edges in rectangular areas. There
are obviously many orientations available for each pixel but they are reduced to
eight possible rotations for ease of comparison and generalization. For any rectan-
gle, many possible features are extracted. One set of features is the ratio of any two
pairs of the eight EOHs [17]. There are therefore 8 choose 2 = 28 possibilities for
such features. Another feature that is calculated is the ratio of the most dominant
EOH in a rectangle to the sum of all other EOHs. Levi and Weiss [17] claim that
using EOHs, they are able to achieve higher detection rates at all training database
sizes.

Their goal was to achieve similar or better performance of the system to Viola
and Jones’ work while substantially reducing training time. They primarily achieve
this because EOH gives good results with a much smaller training set. Using these
orientation features, symmetry features are created and used. Every time a WC was
added to their machine, its vertically symmetric version was added to a parallel yet
independent cascade. Using this parallel machine architecture, the authors were able
to increase the accuracy of their system by 2 percent when both machines were run
simultaneously on the test data. The authors also mention detecting profile faces. Their
results are comparable to those of other proposed systems but their system works in
real-time and uses a much smaller training set.

11.5.6 Fast AdaBoost

Wu et al. [30] propose a training time performance increase over Viola and Jones’
training method. They change the training algorithm in such a way that all of the
features are tested on the training set only once (per each classifier). The ith clas-
sifier (1 ≤ i ≤ N) is given as input the desired minimum detection rate di and the
maximum false positive rate fpi. These rates are difficult to predetermine because the
performance of the system varies greatly. The authors start with optimistic rates and
gradually decrease expectations after including over 200 features until the criterion is
met. Each feature is trained so that it has minimal false positive rate fpi. The obtained
WCs hj are sorted according to their detection rates. The strong classifier is created
by incrementally adding the feature that either increases the detection rate (if it is
<di) or minimizes false positives until desired levels are achieved in both categories.
Since the features are tested independently, the weights of the positive and negative
training examples that are incorrectly classified are not changed. The decision of the

336 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

ensemble classifier is formed by a majority vote of the WCs (that is, each WC has
equal weight in the work by wu et al. [30]). The authors state that using their model of
training, the desired detection rate was more difficult to achieve than the desired false
positive rate. To improve this defect, they introduce asymmetric feature selection.
They incorporated a weighting scheme into the selection of the next feature. They
chose weights of 1 for false positive costs and λ for false negative costs. λ is the
cost ratio between false negatives and false positives. This setup allows the system
to add features that increase the detection rate early on in the creation of the strong
classifier.

Wu et al. [30] state that their method works almost as well as that of Viola and
Jones when applied to the detection of upright, forward-facing faces. They however
achieve a training time that is two orders of magnitude faster than that of Viola and
Jones. This is achieved in part by using a training set that was much smaller than
Viola and Jones’ [27], yet generated similar results.

We will now explain the time complexity of both Viola and Jones’ [27] and Wu’s
[30] training methods. There are three factors to consider when finding the time com-
plexity of each training procedure: the number of features F, the number of WCs in
a classifier T, and the number of examples in the training set q. One feature in one
example takes O(1) time because of integral images. One feature on q examples takes
O(q) time to evaluate, and O(q log(q)) to sort and find the best WC. Finding the best
feature takes O(Fq log(q)) time. Therefore, the construction of the classifier takes
O(TFq log q). Wu’s [30] method takes O(Fq log q) time to train all of the classifiers
in the initial stage. Testing each new WC while assuming that the summary votes of all
classifiers are previously stored would take O(q) time. It would then take O(Fq) time
to select the best WC. Therefore, it takes O(TqF) time to chose T WC. We deduce
that it would take O(Fq log q+ TqF) time to complete the training using the methods
described by Wu et al. [30]. The dominant term in the time complexity of Wu’s [30]
algorithm is O(TqF). This is order O(log q) times faster than the training time for
Viola and Jones’ method [27]. For a training set of size q = 10, 000, log2 q ≈ 13. For
the same size training sets, Wu’s [30] algorithm would be 13 times faster to train,
not a 100 times as claimed by the authors. The authors compared training times to
achieve a predetermined accuracy rate, which requires fewer training items than Viola
and Jones’ method [27]. Froba et al. [13] elaborate on a face verification system. The
goal of this system is to be able to recognize a particular person based on his/her
face. The first step in face verification is face detection. The second is to analyze the
detected sample and see if it matches one of the training examples in the database.
The mouths of input faces into the system are cropped because the authors claim
that this part of the face varies the most and produces unstable results. They how-
ever include the forehead since it helps with system accuracy. The authors use the
same training algorithm for face detection as Viola and Jones [27], but include a few
new features. They use AdaBoost to do the training, but the training set is cropped,
which means that the machine is trained on slightly different input than Viola and
Jones [27]. The authors mention that a face is detectable and verifiable with roughly
200 features that are determined by AdaBoost during the training phase. The actual
verification or recognition step of individual people based on these images is done

NEW FEATURES AND APPLICATIONS 337

using information obtained in the detection step. Each face that is detected is made
up of a vector of 200 numbers that are the evaluations of the different features that
made up that face. These numbers more or less uniquely represent each face and are
used as a basis of comparison of two faces. The sum of the weighted differences in
the feature values between the detected face and the faces of the individual people
in the database is found and compared against a threshold as the verification step.
This is a sort of nearest-neighbor comparison that is used in many other applica-
tions.

11.5.7 Downhill Feature Search

McCane and Novins [20] described two improvements over the Viola and Jones’ [27]
training scheme for face detection. The first one is a 300-fold speed improvement
over the training method, with an approximately three times slower execution time
for the search. Instead of testing all features at each stag (exhaustive search), McCane
and Novins [20] propose an optimization search, by applying a “downhill search”
approach. Starting from a feature, a certain number of neighboring features are tested
next. The best one is selected as the next feature, and the procedure is repeated until
no improvement is possible. The authors propose to use same size adjacent features
(e.g., rectangles “below” and “above” a given one, in each of the dimensions that
share one common edge) as neighbors. They observe that the work by Viola and
Jones [27] applies AdaBoost in each stage to optimize the overall error rate, and
then, in a postprocessing step, adjust the threshold to achieve the desired detection
rate on a set of training data. This does not exactly achieve the desired optimization
for each cascade step, which needs to optimize the false positive rate subject to the
constraint that the required detection rate is achieved. As such, sometimes adding
a level in an AdaBoost classifier actually increases the false positive rate. Further,
adding new stages to an AdaBoost classifier will eventually have no effect when the
classifier improves to its limit based on the training data. The proposed optimization
search allows it to add more features (because of the increased speed), and to add
more parameters to the existing features, such as allowing some of the subsquares
in a feature to be translated. The second improvement in the work by McCane and
Novins [20] is a principled method for determining a cascaded classifier of optimal
speed. However, no useful information is reported, except the guideline that the false
positive rate for the first cascade stage should be between 0.5 and 0.6. It is suggested
that exhaustive search [27] could be performed at earlier stages in the cascade, and
replaced by optimized search [20] in later stages.

11.5.8 Bootstrapping

Sung and Poggio [22] applied the following “bootstrap” strategy to constrain the
number of nonface examples in their face detection system. They incrementally select
only those nonface patterns with high utility value. Starting with a small set of non-face
examples, they train their classifier with current database examples and run the face
detector on a sequence of random images (we call this set of images a “semitesting”

338 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

set). All nonface examples that are wrongly classified by the current system as faces
are collected and added to the training database as new negative examples. They
notice that the same bootstrap technique can be applied to enlarge the set of positive
examples. In the work by Bartlett et al. [3], a similar bootstrapping technique was
applied. False alarms are collected and used as nonfaces for training the subsequent
strong classifier in the sequence, when building a cascade of classifiers.

Li et al. [18] observe that the classification performance of AdaBoost is often poor
when the size of the training sample set is small. In certain situations, there may be
unlabeled samples available and labeling them is costly and time consuming. They
propose an active learning approach, to select the next unlabeled sample that is at the
minimum distance from the optimal AdaBoost hyperplane derived from the current
set of labeled samples. The sample is then labeled and entered into the training set.
Abramson and Freund [1] employ a selective sampling technique, based on boost-
ing, which dramatically reduces the amount of human labor required for labeling
images. They apply it to the problem of detecting pedestrians from a video camera
mounted on a moving car. During the boosting process, the system shows subwin-
dows with close classification scores, which are then labeled and entered into positive
and negative examples. In addition to features from the work by Viola and Jones
[27], authors also use features with “control points” from the work by Burghardt and
Calic [2].

Zhang et al. [31] empirically observe that in the later stages of the boosting process,
the nonface examples collected by bootstrapping become very similar to the face
examples, and the classification error of Haar-like feature based WC is thus very close
to 50 percent. As a result, the performance of a face detection method cannot be further
improved. Zhang et al. [31] propose to use global features, derived from Principal
component analysis (PCA), in later stages of boosting, when local features do not
provide any further benefit. They show that WCs learned from PCA coefficients are
better boosted, although computationally more demanding. In each round of boosting,
one PCA coefficient is selected by AdaBoost. The selection is based on the ability to
discriminate faces and nonfaces, not based on the size of coefficient.

11.5.9 Other AdaBoost Based Object Detection Systems

Treptow et al. [26] described a real-time soccer ball tracking system, using the de-
scribed AdaBoost based algorithm [27]. The same features were used as in the work
by Viola and Jones [27]. They add a procedure for predicting ball movement.

Cristinacce and Cootes [6] extend the global AdaBoost-based face detector by
adding four more AdaBoost based algorithms that detect the left eye, right eye, left
mouth corner, and right mouth corner within the face. Their placement within the
face is probabilistically estimated. Training face images are centered at the nose and
some flexibility in position of other facial parts with a certain degree of rotation is
allowed in the main AdaBoost face detector, because of the help provided by the four
additional machines.

FloatBoost [31,32] differs from AdaBoost in a step where the removal of previously
selected WCs is possible. After a new WC is selected, if any of the previously added

NEW FEATURES AND APPLICATIONS 339

classifiers contributes to error reduction less than the latest addition, this classifier
is removed. This results in a smaller feature set with similar classification accuracy.
FloatBoost requires about a five times longer training time than AdaBoost. Because
of the reduced set of selected WCs, Zhang et al. [31,32] built several face recognition
learning machines (about 20), one for each of face orientation (from upfront to pro-
files). They also modified the set of features. The authors conclude that the method
does not have the highest accuracy.

Howe [11] looks at boosting for image retrieval and classification, with comparative
evaluation of several algorithms. Boosting is shown to perform significantly better
than the nearest-neighbor approach. Two boosting techniques that are compared are
based on feature- and vector-based boosting. Feature-based boosting is the one used
in the work by Viola and Jones [27]. Vector-based boosting works differently. First,
two vectors, toward positive and negative examples, are determined, both as weighted
sums (thus corresponding to a kind of average value). A hyperplane bisecting the angle
between them is used for classification. The dot product of the tested example that
is orthogonal to that hyperplane is used to make a decision. Comparisons are made
on five training sets containing suns, churches, cars, tigers, and wolves. The features
used are color histograms, correlograms (probabilities that a pixel B at distance x
from pixel A has the same color as A), stairs (patches of color and texture found in
different image locations), and Viola and Jones’ features. Vector boosting is shown
to be much faster than feature boosting for large dimensions. Feature-based boosting
gave better results than vector based when the number of dimensions in the image
representation is small.

Le and Satoh [15] observe AdaBoost advantages and drawbacks, and propose to
use it in the first two stages of the classification process. The first stage is a cascaded
classifier with subwindows of size 36× 36, the second stage is a cascaded classifier
with subwindows of size 24× 24. The third stage is an SVM classifier for greater
precision. Silapachote et al. [21] use histograms of Gabor and Gaussian derivative
responses as features for training and apply them for face expression recognition
with AdaBoost and SVM. Both approaches show similar results and AdaBoost offers
important feature selections that can be visualized.

Barreto et al. [4] described a framework that enables a robot (equipped with a
camera) to keep interacting with the same person. There are three main parts of
the framework: face detection, face recognition, and hand detection. For detection,
they use Viola and Jones’s features [27] improved by Lienhart and Maydt [14]. The
eigenvalues and PCA are used in the face recognition stage of the system. For hand
detection, they apply the same techniques used for face detection. They claim that the
system recognizes hands in a variety of positions. This is contrary to the claims made
by Kolsch et al. [13] who built one cascaded AdaBoost machine for every typical
hand position and even rotation.

Kolsch and Turk [16,17] describe and analyze a hand detection system. They create
a training set for each of the six posture/view combinations from different people’s
right hands. Then both training and validation sets were rotated and a classifier was
trained for each angle. In contrast to the case of the face detector, they found poor
accuracy with rotated test images for as little as a 4◦ rotation. They then added rotated

340 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

example images to the same training set, showing that up to 15◦ of rotation can be
efficiently detected with one detector.

11.5.10 Binary and Fuzzy Weak Classifiers

Most AdaBoost implementations that we found in literature use binary WCs, where
the decision of a WC is either accept or reject, which will be valued at +1 and −1,
respectively (and described in Chapter 2). We also consider fuzzy WCs [23] as follows.
Instead of making binary decisions, fuzzy WCs make a ‘weighted’ decision, as a real
number in the interval [−1, 1]. Fuzzy WCs can then simply replace binary WCs as
basic ingredients in the training and testing programs, without affecting the code or
structure of the other procedures.

A fuzzy WC is a function of the form h(x, f, s, θ, θmn, θmx) where x is the tested sub
image, f is the feature used, s is the sign (+ or−), θ is the threshold, and θmn and θmx

are the adopted extreme values for positive and negative images. The sign s defines
on what side the threshold the positive examples are located. Threshold θ is used to
establish whether a given image passes a classifier test in the following fashion: when
feature f is applied to image x, the resulting number is compared to threshold θ to deter-
mine how this image is categorized by the given feature. The equation is given below

sf (x) < sθ.

If the equation evaluates true, the image is classified as positive. The function
h(x, f, s, θ, θmn, θmx) is then defined as follows. If the image is classified as posi-
tive (sf (x) < sθ) then h(x, f, s, θ, θmn, θmx) = min(1, |(f (x)− θ)/(θmn − θ)|). Oth-
erwise h(x, f, s, θ, θmn, θmx) = max(−1,−|(f (x)− θ)/(θmx − θ)|). This definition is
illustrated in the following example.

Let s = 1, thus the test is f (x) < θ. One way to determine θmn and θmx (used in our
implementation) is to find the minimal feature value of the positive examples (example
“1” seen here), and maximal negative value (example “H” seen here) and assign them
to θmn and θmx, respectively. If s = −1, then the definitions are modified accordingly.
Suppose that an image is evaluated to be around the letter “I” in the example (it could be
exactly the letter “I” in the training process or a tested image at runtime). Since f (x) <

θ, the image is estimated as positive. The degree of confidence in the estimation is
|(f (x)− θ)/(θmn − θ)|, which is about 0.5 in the example. If the ratio is > 1, then
it is replaced by 1. The result of the evaluation is then h(x, f, s, θ, θmn, θmx) = 0.5,
which is returned as the recommendation.

11.5.11 Strong Classifiers

A strong classifier is obtained by running the AdaBoost machine. It is a linear com-
bination of WCs. We assume that there are T WCs in a strong classifier, labeled

CONCLUSIONS AND FUTURE WORK 341

h1, h2, . . . , hT , and each of these comes with its own weight labeled α1, α2, . . . , αT .
The tested image x is passed through the succession of WCs h1(x), h2(x), . . . , hT (x),
and each WC assesses if the image passed its test. In case of binary WCs, the recom-
mendations are either−1 or 1. In case of using fuzzy WCs, the assessments are values
ρ in the interval [−1, 1]. Values ρ from interval (0, 1] correspond to a pass (with confi-
dence ρ) and in the interval [0,−1] a fail. Note that hi(x) = hi(x, fi, si, θi, θmn, θmx)
is abbreviated here for convenience (parameters θmn and θmx are needed only for
fuzzy WCs). The decision that classifies an image as being positive or negative is
made by the following inequality:

α = α1h1(x)+ α2h2(x)+ · · · + αT hT (x) > δ.

From this equation, we see that images that pass (binary or weighted) weighted
recommendations of the WC tests are cataloged as positive. It is therefore a (simple or
weighted) voting of selected WCs. The value α also represents the confidence of over-
all voting. The error is expected to be minimal when δ = 0, and this value is used in
our algorithm. The α values are determined once at the beginning of the training pro-
cedure for each WC, and are not subsequently changed. Each αi = − log(ei/(1− ei)).
Each ei is equal to the cumulative error of the WC.

11.6 CONCLUSIONS AND FUTURE WORK

It is not so trivial to apply any AdaBoost approach to the recognition of a new vision
problem. Pictures of the new object may not be readily available (such as those for
faces). A positive training set numbering in the thousands is easily acquired with a
few days spent on the internet hunting for faces. It took roughly a month to collect
the data set required for the training and testing of the detection of the Honda Accord
[24]. Even if a training set of considerable size could be assembled, how long would
it take to train? Certainly, it would take in the order of months. It is therefore not
possible to easily adapt Viola and Jones’ standard framework to any vision problem.
This is the driving force behind the large quantity of research that is being done in
this field. Many authors still try to build upon the AdaBoost framework developed
by Viola and Jones, which only credits this work further. The ideal object detection
system in CV would be the one that can easily adapt to finding different objects in
different settings while being autonomous from human input. Such a system is yet to
be developed.

It is easy to see that there is room for improvement in the detection procedures
seen here. The answer does not lie in arbitrarily increasing the number of training
examples and WCs. The approach of increasing the number of training examples is
brute force, and is costly when it comes to training time. Increasing the number of WCs
would result in slower testing times. We propose to do further research in designing
a cascaded classifier that will still work with a limited number of training examples,
but can detect a wide range of objects. This new cascaded training procedure must
also work in very limited time; in the order of hours, not days or months as proposed
by predecessors.

342 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

The design of fuzzy WCs and the corresponding fuzzy training procedure may
be worth further investigation. We have perhaps only seen applications that were
solvable efficiently with standard binary WCs. There are perhaps some more difficult
problems, with finer boundaries between positive and negative examples, where fuzzy
WCs would produce better results. Since the change that is involved is quite small,
affecting only a few lines of code, it is worth trying this method in future object
detection cases.

All of the systems that were discussed here were mainly custom made to suit the
purpose of detecting one object (or one class of objects). Research should be driven
to find a flexible solution with a universal set of features that is capable of solving
many detection problems quickly and efficiently.

An interesting open problem is to also investigate constructive learning of good
features for object detection. This is different from applying an automatic feature
triviality test on existing large set of features, proposed in the works by Stojmenovic
[24,25]. The problem is to design a machine that will have the ability to build new
features that will have good performance on a new object detection task. This appears
to be an interesting ultimate challenge for the machine learning community.

REFERENCES

1. Abramson Y, Freund Y. Active learning for visual object recognition. Forthcoming.

2. Burghardt T, Calic J. Analysing animal behaviour in wildlife videos using face detection
and tracking, IEE Proc Vision, Image Signal Proces. Special issue on the Integration of
Knowledge, Semantics and Digital Media Technology; March 2005.

3. Bartlett MS, Littlewort G, Fasel I, Movellan JR. Real-time face detection and expres-
sion recognition: development and application to human-computer interaction. In: CVPR
Workshop on Computer Vision and Pattern Recognition for Human–Computer Interaction,
IEEE CVPR; Madison, Wi; 2003 June 17.

4. Barreto J, Menezes P, Dias J. Human–robot interaction based on Haar-like features and
eigenfaces. In: Proceedings of the New Orleans: International Conference on Robotics and
Automation; 2004. 1888–1893.

5. Burghardt T, Thomas B, Barham P, Calic J. Automated visual recognition of individual
african penguins. In: Proceedings of the Fifth International Penguin Conference; Ushuaia,
Tierra del Fuego, Argentina; September 2004.

6. Cristinacce D, Cootes T. Facial feature detection using AdaBoost with shape constraints.
In: Proceedings of 14th BMVA British Machine Vision Conference; Volume 1, Norwich,
UK; September, 2003. p. 231–240,

7. Efford N. Digital Image Processing: A Practical Introduction Using Java. Addison Wesley;
2000.

8. Freund Y, Schapire RE. A decision-theoretic generalization on on-line learning and an
application to boosting. In: Proceedings of the 2nd European Conference on Computa-
tional Learning Theory (Eurocolt95); Barcelona, Spain;1995 p. 23–37; J Comput Syst Sci
1997;55(1):119–139.

9. Freund Y, Schapire RE. A short introduction to boosting. J J Soc Artif Intell 1999;14(5):
771–780.

REFERENCES 343

10. Fröba B, Stecher S, Küblbeck C. Boosting a Haar-like feature set for face verification.
Lecture Notes in Computer Science; 2003. 617–624.

11. Howe NR. A closer look at boosted image retrieval. In: Proceedings of the International
Conference on Image and Video Retrieval; July 2003. p 61–70.

12. Jones M, Viola P. Fast multi-view face detection. Mitsubishi Electric Research Laborato-
ries, TR2003-96 July 2003, http://www.merl.com; shown as demo at IEEE Conference on
Computer Vision and Pattern Recognition (CVPR); June 2003.

13. Kolsch M, Turk M. Robust hand detection. In: Proceedings of the IEEE Interanational
Conference on Automatic Face and Gesture Recognition; May 2004. p. 614–619.

14. Lienhart R, Maydt J. An extended set of haar-like features for rapid object detection. In:
Proceedings of the IEEE Interanational Conference Image Processing. Volume 1, 2002. p
900–903.

15. Le DD, Satoh S. Feature selection by AdaBoost for SVM-based face detection. Information
Technology Letters, The Third Forum on Information Technology (FIT2004); 2004.

16. Le D, Satoh S. Fusion of local and global features for efficient object detection. IS &
T/SPIE Symposium on Electronic Imaging; 2005.

17. Levi K, Weiss Y. Learning object detection from a small number of examples: the im-
portance of good features. In Proceedings of the International Conference on Computer
Vision and Pattern Recognition (CVPR). Volume 2, 2004. p 53–60.

18. Li X, Wang L, Sung E. Improving AdaBoost for classification on small training sample sets
with active learning. In: Proceedings of the Sixth Asian Conference on Computer Vision
(ACCV)., Korea, 2004.

19. Luo H, Yen J, Tretter D. An efficient automatic redeye detection and correction algo-
rithm. In: Proceedings of the 17th IEEE International Conference on Pattern Recognition,
(ICPR’04); Volume 2, 2004 Aug 23–26 Cambridge UK: p 883–886.

20. McCane B, Novins K. On training cascade face detectors. Image and Vision Computing.
Palmerston North, New Zealand, 2003. p 239–244.

21. Silapachote P, Karuppiah DR, Hanson AR. Feature selection using AdaBoost for face
expression recognition. In: Proceedings of the 4th IASTED International Conference on
Visualization, Imaging, and Image Processing, VIIP 2004; Marbella, Spain, September
2004. p 452–273.

22. Sung K, Poggio T. Example based learning for view-based human face detection. IEEE
Trans Pattern Anal Mach Intell 1998; 20:39–51.

23. Schapire R, Singer Y. Improved boosting algorithms using confidence-rated predictions.
Mach Learn 1999. 37(3):297–336.

24. Stojmenovic M. Real time machine learning based car detection in images with fast training.
Mach Vis Appl, 2006;17(3):163–172.

25. Stojmenovic M. Real time object detection in images based on an AdaBoost machine
learning approach and a small training set. Master thesis, Carleton University; June 2005.

26. Treptow A, Masselli A, Zell A. Real-time object tracking for soccer-robots without color
information. In: Proceedings of the European Conference on Mobile Robotics ECMR,
2003.

27. Viola P, Jones M. Robust real-time face detection. Int J Comput Vis 2004. 57(2):137–154.

28. Viola P, Jones M. Fast and robust classification using asymmetric AdaBoost. Neural Inform
Processing Syst 2002;14.

344 ALGORITHMS FOR REAL-TIME OBJECT DETECTION IN IMAGES

29. Viola P, Jones M, Snow D. Detecting pedestrians using patterns of motion and appearance.
In: Proc Ninth IEEE Int Conf Comput Vision ICCV 2003; 2:734–741.

30. Wu J, Regh J, Mullin M. Learning a rare event detection cascade by direct feature se-
lection. In: Proceedings of the Advances in Neural Information Processing Systems 16
(NIPS*2003), MIT Press, 2004.

31. Zhang D, Li S, Gatica-Perez D. Real-time face detection using boosting learning in hier-
archical feature spaces. In: Proceedings of the International Conference on Pattern Recog-
nition (ICPR); Cambridge, Aug. 2004. p 411–414.

32. Li SZ, Zhang Z. FloatBoost learning and statistical face detection. IEEE Trans Pattern
Anal Machine Intell Sept. 2004. 26(9):1112–1123.

[Q1]:- There are only 32 ref. in the reference list, but ref. 34 has been cited here,
Please check.

345

