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Abstract. The recent availability of small, inexpensive low power GPS receivers and techniques for finding
relative coordinates based on signal strengths, and the need for the design of power efficient and scalable
networks, provided justification for applying position based routing methods in ad hoc networks. A number
of such algorithms were developed recently. They are all based on three greedy schemes, applied when
the forwarding node is able to advance the message toward destination. In this paper we show that the hop
count, that is the number of transmissions needed to route a message from a source node to a destination
node can be estimated reasonably accurately (in random unit graphs with uniform traffic), with less than
10%, 5% and 7% error for directional (compass), distance (greedy) and progress (MFR) based schemes,
respectively, for 100 nodes with average degrees between 5 and 14, without experiments. Our results are
derived from statistical observations regarding expected position of forwarding neighbor.
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Introduction

Ad hoc networks consist of wireless hosts that communicate with each other in the ab-
sence of a fixed infrastructure. They have potential applications in disaster relief, con-
ference and battlefield environments, and received significant attention in recent years.
Sensor networks are a class of wireless ad hoc networks. Wireless networks of sensors
are likely to be widely deployed in the near future because they greatly extend our ability
to monitor and control the physical environment from remote locations and improve our
accuracy of information obtained via collaboration among sensor nodes and online in-
formation processing at those nodes. Networking these sensors (empowering them with
the ability to coordinate amongst themselves on a larger sensing task) will revolutionize
information gathering and processing in many situations. Other contexts include rooftop
networks, static networks with nodes placed on top of buildings, to be used when wired
networks fail.

In an ad hoc network, a message sent by a node reaches all its neighboring nodes
that are located at distances up to the transmission radius. Because of the limited trans-
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mission radius, the routes between nodes are normally created through several hops in
such multi-hop wireless networks. In the widely accepted unit graph model, two nodes A

and B in the network are neighbors if the distance between them is at most R, where R

is the transmission radius which is equal for all nodes in the network.
In this article we consider the routing task, in which a message is to be sent from

a source node to a destination node in a given wireless network. The task of finding
and maintaining routes in sensor and ad hoc networks is nontrivial since host mobility
and changes in node activity cause frequent unpredictable topological changes. The
destination node is known and addressed by means of its location. We assume that the
position of destination is accurate. The problem of designing location update schemes
to provide accurate destination information and enable efficient routing in mobile ad hoc
networks appears to be more difficult than routing itself and will not be discussed here
(a recent informative survey is given in [Stojmenovic, 6]).

The distance between neighboring nodes can be estimated on the basis of incom-
ing signal strengths or time delays in direct communications. Relative coordinates of
neighboring nodes can be obtained by exchanging such information between neighbors.
Alternatively, the location of nodes may be available directly by communicating with
a satellite (for outdoor networks), using GPS (Global Positioning System), if nodes are
equipped with a small low power GPS receiver. The position based approach in rout-
ing becomes practical due to the rapidly developing software and hardware solutions
for determining absolute or relative positions of nodes in indoor/outdoor ad hoc net-
works [Hightower and Borriello, 3].

The routing algorithms should perform well for wireless networks with an arbi-
trary number of nodes. Sensor and rooftop networks, for instance, have hundreds or
thousands of nodes. While other characteristics of each algorithm are easily detected,
scalability is sometimes judgmental, and/or dependent on the performance evaluation
outcome. A scalable solution is the one that performs well in a large network. It has
been experimentally confirmed [Li, 5; Stojmenovic, 6] that routing protocols that do not
use geographic location in the routing decisions, such as AODV, DSDV or DSR (their re-
cent survey is given in [Tseng et al., 10]) are not scalable. Therefore, it is likely that only
position-based approaches provide satisfactory performance for large networks. Scala-
bility is provided mainly by applying localized algorithms.

Localized algorithms are distributed in nature and resemble greedy algorithms,
where simple local behavior achieves a desired global objective. In a localized routing
algorithm, each node makes a decision to which neighbor to forward the message based
solely on the location of itself, its neighboring nodes, and the destination. Such routing
schemes are known as the position-based schemes. In the shortest (weighted) path based
non-localized algorithms, each node maintains accurate topology of the whole network.
In addition, since nodes change between active and sleep periods, the activity status for
each node is also required. Although routing table (typical non-position) based solutions
merely keep the best neighbor information on a route toward the destination, the commu-
nication overhead for maintenance of routing tables due to node mobility and topology
changes is quadratic in network size (each change in edge or node status may trigger
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routing table modifications in large portion of the network). On the other hand, position
based localized algorithms avoid that overhead, by requiring only accurate neighborhood
information, and a rough idea on the position of the destination. For example, edge and
node changes in one part of the network have no immediate impact on almost any route.
Clearly, only localized algorithms provide scalable solutions, especially for networks
with critical power constrained resources at nodes (e.g., sensor networks).

1. Greedy routing schemes

In a localized routing scheme, node S, currently holding the message, is aware only about
the position of its neighbors within the transmission radius and destination D (indicated
by black circles in figure 1).

Takagi and Kleinrock [9] proposed the first position based routing scheme, based
on the notion of progress. Given a transmitting node S, the progress of a node A is
defined as the projection onto the line connecting S and D. In the MFR (Most Forward
within Radius) scheme [Takagi and Kleinrock, 9], the packet is forwarded to a neighbor
whose progress is maximal, such as node M in figure 1.

Finn [2] proposed the greedy routing scheme based on geographic distance. S se-
lects neighboring node G (see figure 1) that is closest to the destination among its
neighbors. Only neighbors closer to the destination than S are considered. Otherwise
there is a lack of advance, and method fails. A variant of this method is called GEDIR
(GEographic DIstance Routing) scheme [Stojmenovic and Lin, 7]). In this variant, ap-
plied on other schemes as well, all neighbors are considered, and the message is dropped
if the best choice for a current node is to return the message to the node the message came
from (stoppage criterion indicating lack of advance).

In the compass routing method (referred also as the directional method) proposed
by Kranakis et al. [4], the message m is forwarded to the neighbor A (see figure 1),

Figure 1. S selects M in MFR path SMUV D, G in greedy path SGHI that fails to deliver, A in direction
based path SAUWV D.
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such that the direction SA is closest to the direction SD (that is, the angle � ASD is
minimized).

The MFR and greedy/GEDIR methods, in most cases, provide the same path to the
destination, and are loop-free [Stojmenovic and Lin, 7]. The hop count for the direc-
tional method is somewhat higher than for the greedy scheme, while the success rate is
similar. All methods have high delivery rates for dense graphs, and low delivery rates
for sparse graph (about half the messages at average degrees below 4 are not delivered)
[Stojmenovic and Lin, 7]. When successful, hop counts of greedy and MFR methods
nearly match the performance of the shortest path algorithm. The directional method,
and any other method that includes forwarding the message to a neighbor with closest
direction, such as DREAM and LAR, are not loop-free (see [Stojmenovic and Lin, 7] for
counterexample and references).

The performance of these schemes depends on the network density. Greedy
schemes have a performance close to performance of optimal shortest path algorithm
for dense graphs, but have low delivery rates for sparse graphs. Hop count was tradi-
tionally used to measure the energy requirement of a routing task, thus using a constant
metric per hop.

In this paper, we study the hop count for the three basic position-based routing
schemes. We shall derive formulas for their estimation that is very close to the data
obtained by simulation [Stojmenovic and Lin, 7]. This will provide such estimation for
larger number of nodes or larger densities, that is, beyond the data available experimen-
tally.

2. Expected distance between two nodes in random unit graph

In this section we shall estimate the average distance between two nodes (e.g., source and
destination) in a random unit graph with n nodes and average density (average number
of neighbors of each node) k. Let the nodes be placed inside a square of with side
lengths m. The transmission radius needed to achieve the desired node density can
be estimated using the well known relation k = πR2/m2(n − 1) giving the expected
number of nodes inside a circle centered at one of nodes. It is proportional to the ratio
of areas of circle with radius R (transmission radius of the unit graph) and area of the
square. This is the factor to be multiplied with the remaining number n − 1 of nodes.
Solving this equation yields R = m

√
k/(π(n − 1)). Note that Li [5] provides more

accurate estimation that accounts for border effects, but we believe that routing tasks do
not reflect their impact, and will use this simplified formula.

Lemma 1. If two points are chosen at random in the interval [0, 1], their expected dis-
tance is 1/3.

Proof. Let x � y be two chosen points. All such pairs make a triangle in x-y coor-
dinate plane. For each such pair, we consider the weight y − x which is the distance
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between the two points. The expected distance is the average weight, and can be ob-
tained by considering the double integral∫ 1

0

( ∫ 1

x

(y − x) dy

)
dx =

∫ 1

0

(
1

2
− x + x2

2

)
dx = 1/6.

The area of the triangle is 1/2, thus the average distance is 1/6 : 1/2 = 1/3. �

Lemma 2. If two points are chosen at random inside an s-dimensional square with side
length m, the expected distance between them is m

√
s/3.

Proof. The expected distance along each dimension is m/3. Therefore the expected
distance between them is

√
(m/3)2 + · · · + (m/3)2 = m

√
s/3. �

All the results in the rest of this paper assume uniform traffic and uniform random
distribution of nodes inside a square.

3. Estimating hop count in directional method

We will first find the expected advance from source S to destination D in one hop.
Interestingly, it will not depend on the distance d = |SD| from source to destination,
measured in local terms. We shall restrict our analysis to s = 2, that is, two-dimensional
case.

Lemma 3. The expected position of forwarding neighbor in directional method in a unit
graph with average density k and transmission radius R is a point at distance R

√
2/2 and

at angle π/(2k) with respect to direction SD.

Proof. Divide the region around S into k equal angular ranges, so that direction SD is
bisector of one of these regions (see figure 2 where k = 3). Each such region is expected
to contain one of k neighboring nodes. The one node A that is located in the region
containing line SD is expected to make an angle π/(2k) with respect to direction SD.

Figure 2. Expected advance in the directional based method.
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Node A will be selected by the directional method. Next, we will find how far, on
average, node A from S is. Let r = |SA|. The circle of radius r is expected to divide the
circle of radius R into two areas of equal size, that is πR2 = 2πr2. That is, r = R

√
2/2.

This determines the expected position A of forwarding node in one hop. �

Theorem 1. The expected hop count in directional based method is �
√

2|SD|/
(R cos(π/(2k)).

Proof. Let A′ be the projection of point A on the direction SD. Clearly |AD| �
|A′D| = |SD| − |SA′|. Since |SA′| = R

√
2/2 cos(π/(2k)), the number of expected

hops is � |SD|/|SA′| �
√

2|SD|/(R cos(π/(2k)). �

The error obtained by using theorem 1 to approximate hop count is below 13%
for n = 100 nodes and densities k from 5 to 15, using data from [Stojmenovic and
Lin, 7] for exact directional-based scheme hop count. As a more precise estimate, we
investigated adding 0.5 to the lower bound obtained by theorem 1, and the estimated hop
count is included in table 1. The error has been reduced to below 10%, obtained as an
overestimate.

We also investigated another estimate that can be obtained by the following algo-
rithm, which calculates new expected distance |AD| as replacement to |SD|, and counts
hops until the expected distance falls bellow transmission radius R.

Algorithm.
Input: n, k,m

d = |SD| = m
√

2/3
R = m

√
k/(π(n − 1))

d1 = |SA′| = R
√

2/2 cos(π/(2k))

Hop_count = 0
REPEAT

Hop_count = Hop_count + 1
d =

√
(d − d1)2 + R2 sin2(π/2k)/2

UNTIL d � R

Hop_count = Hop_count + d/R + 1.

After exiting the loop, a correction is made in the hop count, by adding 1 for the fact
that one more hop is needed to deliver the message to destination, and the fact that the
remaining distance has impact on the hop count considered as a real number, reflecting
an average case.

Table 1 compares data obtained by experiments [Stojmenovic and Lin, 7] with data
obtained from theorem 1, its correction by adding 0.5 to the hop count, and above al-
gorithm. The number of nodes is n = 100, the square has sides m = 100, the average
distance is therefore 47.14. It can be observed that theorem 1 underestimates the hop
count by at most 12% while the algorithm can overestimate by at most 16% or underes-
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Table 1
Comparing experimental data with data from theorem 1 and algorithm.

Density k 5 6 7 8 9 10 11 12 13 14

R 12.68 13.89 15 16 17.01 17.93 18.81 19.64 20.44 21.22
SA′ 8.53 9.49 10.34 11.1 11.85 12.52 13.16 13.77 14.35 14.91
Directional 5.92 5.55 5.13 4.63 4.55 4.17 4.06 3.72 3.6 3.34
Theorem 1 5.53 4.97 4.56 4.24 3.98 3.76 3.58 3.42 3.29 3.16
Theorem 1/Dir 0.93 0.9 0.89 0.91 0.87 0.9 0.88 0.92 0.91 0.95
Algorithm 6.69 5.19 5.3 4.48 4.59 4.53 4.42 4.32 3.23 3.16
Alg/Dir 1.13 0.93 1.03 0.97 1.01 1.09 1.09 1.16 0.9 0.95
d/SA′ + 0.5 6.03 5.47 5.06 4.74 4.48 4.26 4.08 3.92 3.79 3.66
(d/SA′ + 0.5)/Dir 1.02 0.99 0.99 1.02 0.98 1.02 1 1.05 1.05 1.1

Table 2
Estimating hop count for directional method for n = 1000 nodes.

Density k 100 5 6 7 8 9 10 11 12 13 14

R 17.85 3.99 4.37 4.72 5.05 5.36 5.64 5.92 6.16 6.47 6.68
SA′ 12.62 2.68 2.99 3.26 3.5 3.73 3.94 4.14 4.36 4.52 4.69
d/SA′ + 0.5 4.24 17.56 15.79 14.48 13.5 12.64 11.96 11.38 10.87 10.43 10.04

timate by at most 7%. The corrected theorem 1 appears to be most accurate, with error
within 10% for all densities.

Table 2 presents estimated hop counts for 1000 nodes, for which no experimental
data are currently available. The selected densities are 5–14 and 100.

4. Estimating hop count in MFR and greedy methods

In case of distance based greedy method, all points inside circle of radius R around
source S that are equidistant from destination D lie on a circular segment centered at D.
If k such circular segments are selected so that the circle centered at S with radius R

is divided into k regions of equal areas, each of these areas will be expected to contain
one neighbor of S. The packet will be forwarded to the region closest to destination,
and expected position of forwarding node is on a circular segment that bounds region
with area 1/(2k) of the circular area (that is, bisects closest of the k regions). The
calculation involved, however, is sophisticated (though possible via numerical methods).
We shall instead consider a simpler case of MFR method, since the performance of
distance greedy method and MFR method were shown to be very close in hop counts
and success rates [Stojmenovic and Lin, 7].

Consider therefore MFR method. The circle with radius R centered at S can be
divided by lines orthogonal to direction SD into k regions with equal areas. Each of these
regions is expected to contain one of k neighbors of S (see figure 3 for an illustration
for k = 5). The region closest to D can be further subdivided into two subregions of
equal area to find the estimated position A of selected neighbor. Thus the area of circular
segment obtained by cutting the circle with a line orthogonal to SD should be πR2/(2k).
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Figure 3. Expected advance in the MFR method.

Table 3
Estimating hop counts for GEDIR and MFR methods.

Density k 5 6 7 8 9 10 11 12 13 14

R 12.68 13.89 15 16 17.01 17.93 18.81 19.64 20.44 21.22
1_GEDIR 5.53 5.13 4.72 4.29 4.19 3.87 3.72 3.39 3.27 3.04
1_MFR 5.61 5.16 4.78 4.33 4.23 3.89 3.75 3.42 3.29 3.07
α 0.81 0.76 0.72 0.69 0.66 0.63 0.61 0.6 0.58 0.56
s/x 5.41 4.69 4.18 3.8 3.5 3.26 3.07 2.9 2.76 2.63
(d/x)/MFR 0.96 0.91 0.87 0.88 0.83 0.84 0.82 0.85 0.84 0.86
d/x + 0.5 5.91 5.19 4.68 4.3 4 3.76 3.57 3.4 3.26 3.13
(d/x + 0.5)/MFR 1.05 1.01 0.98 0.99 0.95 0.97 0.95 1 0.99 1.02
(d/x + 0.5)/GEDIR 1.07 1.01 0.99 1 0.95 0.97 0.96 1 1 1.03

Let U and V be the intersections of that line with the circle centered at S with radius R.
Let α = � USD. The area of the segment is then also (α/π)(πR2)−R sin(α)R cos(α) =
αR2 −R2/2 · sin(2α). Therefore πR2/(2k) = αR2 − R2/2 · sin(2α). Thus the equation
for determining α is π/(2k) = α − sin(2α)/2. It can be solved by numerical methods,
e.g., bisection method. Per hop advance is x = R cos α, and the number of hops is
� d/x. This proves the following theorem.

Theorem 2. The expected number of hops for MFR routing scheme (in an ad hoc net-
work with uniform traffic and n nodes distributed uniformly at random in a square
of side m so that each node has k neighbors on average) is � d/(R cos α), where
d = |SD| = m

√
2/3 is the expected distance between the source and destination,

π/(2k) = α − sin(2α)/2, and R = m
√

k/(π(n − 1)) is the transmission radius.

Proof. Follows directly from above discussion. �

Theorem 2 leads to an estimate that has an error that does not exceed 18% for
MFR scheme. We considered an improved estimate that is obtained by adding 0.5 to the
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Table 4
Estimating hop count for MFR and greedy methods for 1000 nodes.

Density k 100 5 6 7 8 9 10 11 12 13 14

R 17.85 3.99 4.37 4.72 5.05 5.36 5.64 5.92 6.18 6.44 6.68
α 0.29 0.81 0.76 0.72 0.69 0.66 0.63 0.61 0.6 0.58 0.56
d/x + 0.5 3.26 17.69 15.39 13.78 12.58 11.63 10.87 10.24 9.71 9.25 8.85

amount d/x in theorem 2. It is considerably more accurate, with errors not exceeding
5% for MFR method and 7% for greedy/GEDIR method, as indicated in table 3.

Table 4 presents our estimates for the hop count for n = 1000 nodes (distributed at
random 7 in a square with sides m = 100), and densities 5–14 and 100, for both MFR
and greedy methods.

5. Conclusion

Our estimates are expected to be more accurate for larger number of nodes, and higher
densities. The presented data are for hundred nodes and densities between 5 and 14.
Note that Li [5] gave a more precise formula for the expected density, accounting for
border effects. However, routing is not expected to progress in the direction of missing
neighbors along the border, and therefore we believe that more precise density formula
does nor reflect the routing process. However, making more precise estimates by differ-
ent means may still be possible, and remains an open problem for further research. It is
also of interest to estimate hop count for methods that guarantee delivery, such as FACE
and GFG [Bose et al., 1]. Further research is needed to identify the best GPS based rout-
ing protocols for various network contexts. These contexts include nodes positioned
in three-dimensional space and obstacles, nodes with unequal transmission powers
[Stojmenovic and Lin, 8], or networks with unidirectional links. Estimating hop counts
in these cases pose interesting open problems for further research.
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