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Abstract: Our primary interest is to build fast and 
reliable object recognizers in images based on small training 
sets. This is important in cases where the training set needs 
to be built mostly manually, as in the case that we studied, 
the recognition of the Honda Accord 2004 from rear views. 
Our experiments indicated that the set of features used by 
Viola and others for face recognition was inefficient for our 
problem; therefore, each object requires its own custom-
made set of features for real time and accurate recognition. 
We described a set of appropriate feature types for the 
considered car recognition problem, including a redness 
measure and dominant edge orientations.  The existing edge 
orientation bin division was improved by shifting so that all 
horizontal (vertical, respectively) edges belong to the same 
bin. This feature set was a basis for building a fast and 
reliable car recognizer based on small training set, 
consisting of 155 positive and 760 negative images. It 
detects back views of Honda Accords with a 98.7% 
detection rate and 0.4% false positive rate on the training 
set, and with 89.1% detection rate and a 1.48 x 10-6 false 
positive rate on a test set of 106 images containing roughly 
17.5 million tested sub windows.  

1 INTRODUCTION 

The goal of this article is to analyze the capability of 
current machine learning techniques of solving other similar 
image retrieval problems. By ‘capability’, we mean real 
time performance, a high detection rate, low false positive 
rate, and learning with a small training set. We are 
particularly interested in cases where the training set is not 
easily available, and most of it needs to be manually 
created.  

We will apply machine learning to the detection of 
rears of cars in images. Specifically, the system should be 
able to recognize cars of a certain type such as a Honda 
Accord, 2004. Therefore, input should be an arbitrary 
image, and the result should be that same image with a 
rectangle around any occurrence of the car we are searching 
for. In addition to precision of detection, the second major 
goal is real time performance. The program should quickly 
find all the cars of the given type and position in an image, 
in the same way that Viola [VJ] finds all the heads. The 
definition of ‘real time’ depends on the application, but 
generally speaking we would like to receive an answer for 
testing an image within a second or so. The response time 
depends on the size of the tested image, thus what appears 
to be real time for smaller images may not be so for larger 
ones. 

Finally, our goal is to also design the object detection 
system based on a small number of training examples. We 
envision applications in cases where training examples are 
not easily available. For instances, in the case that we 
studied, we had to take photos of back views of a few 
hundred Honda Accords and other cars to create training 
sets, since virtually no positive images were found on the 
Internet. In such cases, it is difficult to expect that one can 
have tens of thousands of images readily available, which 
was the case for the face detection problem. The additional 
benefit of a small training set is that the training time is 
reduced. This enabled us to perform a number of training 
attempts, adjust the set of examples, adjust the set of 
features, test various sets of weak classifiers, and otherwise 
analyze the process by observing the behaviour of the 
generated classifiers.  

We will apply machine learning methods in an attempt 
to solve the problem of detecting rears of a particular car 
type since they appear to be appropriate given the setting of 
the problem. Machine learning in similar image retrieval has 
proven to be reliable in situations where the target object 
does not change orientation. A classic application has 
become the detection of upright forward facing heads as 
proposed by Viola [VJ]. Cars are typically found in the 
same orientation with respect to the road. They can be 
photographed from various angles (front, side …) but they 
are rarely found up-side-down. The situation we are 
interested in is the rear view of cars. This situation is 
typically used in monitoring traffic since license plates are 
universally found at the rears of vehicles. It is also the target 
of choice of police traffic monitoring equipment, since their 
cameras are usually positioned to film the license plates for 
the purposes of vehicle recognition. Therefore, hardware is 
already in place for various software applications in vehicle 
detection. 

The positive images were taken such that all of the 
Hondas have the same general orthogonal orientation with 
respect to the camera. Some deviation occurred in the pitch, 
yaw and roll of these images, which might be why the 
resulting detector has such a wide range of effectiveness. 
The machine that was built is effective for the following 
deviations in angles: pitch -150, yaw -300 to 300, and roll -
150 to 150. This means that pictures of Hondas taken from 
angles that are off by the stated amounts are still detected by 
the program.  

This article discusses only the feature selection for our 
car detection system. The AdaBoost based framework and 
the remaining issues are discussed in the full version of this 
article [S]. 

2 RELATED WORK 

We are not aware of any existing solution that 
recognizes back view of any particular type of cars. We 
therefore reviewed solutions to more general problems. 
Existing vehicle detection systems, such as those that try to 
drive cars automatically along a highway do not actually 
detect cars on the road. They simply assume that anything 
that is moving on the highway is a vehicle. In scientific 
literature, some car recognition solutions also exist that are 
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based on shape detectors [TC]. An existing shape matching 
based approach [TC] is reported to have a 60%-85% 
detection rate, which is below our stated goals. The 
approach based on nearest neighbour matching [PC] is too 
sensitive to viewpoint change, while the approach based on 
PCA (Principal Component Analysis) [PC] is not a real time 
system.  

The most popular example of object detection is the 
detection of faces. The fundamental application that gave 
credibility to AdaBoost (proposed originally in [FS]) was 
Viola’s real time face finding system [VJ]. AdaBoost is the 
concrete machine learning method that was used by Viola to 
implement his system. In this approach, positive and 
negative training sets are separated by a cascade of 
classifiers, each constructed by AdaBoost. Real time 
performance is achieved by selecting features that can be 
computed in constant time (after a pre-processing step). The 
training time of the face detector appears to be slow, even 
taking months according to some reports. 

 Viola’s face finding system has been modified in 
literature in a number of articles. The modifications include 
inclusion of new features. Of particular interest to us were 
features based on gradient histograms [LW], and those 
based on the color of certain parts of an image [LYT]. The 
AdaBoost machine itself was modified in literature in 
several ways. We have considered all modifications 
proposed in literature, and adopted ideas that were 
considered helpful for achieving our goals. 

 We stress again that most of the successful 
applications of AdaBoost used a large training set. In 
Viola’s original face detector [VJ], 10,000 images were 
used in the training set. The smallest known training 
database for face detection was by Levi and Weiss [LW]. 
They started to achieve detection rates in the 90% category 
when the number of positive examples reached 250. The 
number of negative examples was not specified at this level, 
but the authors say that they randomly downloaded 10,000 
images from the Internet containing over 100,000,000 sub 
windows. They only moderately increased their detection 
rates as the size of the positive set grew drastically. 

We apply a similar general design as in [VJ]. The 
object search is based on a machine that takes in a square 
region of size equal to or greater than 24x24 pixels (for face 
search) [VJ] (we had a limit of 100x150 for the car search) 
as input and declares whether or not this region contains the 
searched object. We use such a machine to analyze the 
entire image. We pass every sub window of every scale 
through this machine to find all sub windows that contain 
faces. A sliding window technique is therefore used. The 
window in [VJ] is shifted 1 pixel after every analysis of a 
sub window (we used a 2 pixels shift to speed things up, 
without notable negative impact). Both dimensions of the 
sub window grow in both length and width 10% every time 
all of the sub windows of the previous size were 
exhaustively searched. 

One of the key contributions in [VJ] was the 
introduction of a new image representation called the 
“Integral Image”, which allows the features used by their 
detector to be computed very quickly. In the pre-processing 
step, Viola [VJ] finds the sums ii(x,y) of pixel intensities (or 
other measurements) i(x’,y’) for all pixels (x’,y’) such that 

x’≤x, y’≤y. This can be done in one pass over the original 
image using the following recurrences: s(x, y) = s(x, y − 1) + 
i (x, y), ii (x, y) = ii (x − 1, y) + s(x, y) (where s(x, y) is the 
cumulative row sum, s(x,−1) = 0, and ii (−1, y) = 0). The 
feature value in the rectangle with corners (x1,y1) 
(bottommost), (x2,y2), (x3,y3) and (x4,y4) (uppermost) is then 
ii(x1,y1)+ii(x4,y4)-ii(x2,y2)-ii(x3,y3) [VJ]. 

3 FEATURES USED IN THE CAR RECOGNITION 

A feature is a function that maps an image into a real 
number. Our experiments indicated that the set of features 
used by Viola [VJ] was inefficient for our problem. Viola’s 
Haar wavelets were eliminated from the training procedure 
completely early in the implementation and testing phase 
since they failed to produce any usable results. Much 
programming effort went into incorporating them into the 
training framework. Not only were their cumulative errors 
in the training process too great to be useful, but their very 
presence in the feature set greatly, yet fruitlessly, increased 
training time. Therefore, each problem requires its own 
custom-made set of features. We will give more details on 
the features used in the training procedure here. Two types 
of basic features were used. They were redness features, and 
dominant edge orientation features. The dominant edge 
orientation and redness features proved themselves to be 
much better than Viola’s original set. This only confirmed 
our view that specific types of features need to be used in 
specific applications. Not all features are equally useful.  

3.1. Redness Features 

The redness features we refer to are taken from the 
work of [LYT]. They concentrated on finding circular red 
regions in images. Their goal was to find and fix red eyes in 
pictures taken of people. Most of their work focused on the 
shape of the red regions found, rather than the techniques 
involved in finding the colour red. We borrow their idea of 
finding predominantly red regions. Our work differs in the 
fact that we look for red regions that signify the stop lights 
of the Honda accord, as opposed to human eyes. Therefore, 
our red regions are rectangular, and much larger than theirs. 
Fig 1 shows an example of a redness feature determined by 
the training process.  

  

  

Figure 1 – Redness feature 

A special ‘redness’ colour space was formed during 
pre-processing to assist in the detection of red areas. This 
colour space was taken from [LYT], and is a one 
dimensional linear combination of the RGB colour space. 
All of the positive and negative inputs in the training set are 
RGB colour images which means that each of their pixels is 
represented by three 8-bit numbers that represent the 
quantity of red, green and blue in a pixel, respectively. Each 
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pixel in the redness colour space is defined as follows: 
Redness = 4R-3G+B [LYT]. The integral image 
computation (the technique is proposed in [VJ]) was applied 
to the redness image to produce one of the inputs to the 
training procedure. The areas of the redness training 
features were determined in constant time using the integral 
image of the redness image.  

3.2 Edge Orientation Features 

Several dominant edge orientation features were used in 
the training algorithm. A well known greyscale image Sobel 
gradient mask (three pixels by three pixels) [E] is used in 
determining the location of edges in an image. The mask is 
applied in both coordinate directions, and the combined 
intensities (called Laplacian intensities, based on Euclidean 
distance) are taken. One more detail of our implementation 
is the threshold that was placed on the intensities of the 
Laplacian values. We used a threshold of 80 to eliminate the 
faint edges that are not useful. A similar threshold was 
employed in [LW]. The orientations of each pixel are 
calculated from its intensity in both directions. The 
orientations are divided into 6 bins so that similar 
orientations can be grouped together. The whole circle is 
divided into 6 bins. It is important to note that the 
orientations of the 00, 900, and 1800 bins are critical in 
identifying Hondas. They are important since Hondas 
mainly have horizontal and vertical edges. The division of 
the bins which places 00 or 900 at the border of two bins 
poses problems since all vertical and horizontal edges can 
fall into two bins. We handle this problem by shifting all of 
the bins by 15 degrees. Note that [LW] did not mention any 
bin shifting, so we believe that they used non-shifted bins. 
They did however vary the number of bins from 4-8. 
Effectively the number of bins does not impact the 
performance much, but these boundaries are avoided. To fit 
all of the orientations into the 0-1800 range, we add 1800 if 
the angle is smaller than 00, and subtract 180 if the angle is 
greater than 1800. The effects of these transformations can 
be seen in Figure 2. In Figure 3, we see a Honda accord and 
its corresponding edge orientation image for the first bin     
[-150,+150]∪[+1650,+1950]. Bin shifting contributed 
significantly to the accuracy of the system. The detection 
rate improved from 74.3% to 89.1%, while the number of 
false positives decreased from 168 to 26. 

 

Figure 2 Six orientation bins 

 

 

Figure 3 Honda and corresponding horizontal edges 

Since we use 6 bins, we create 6 images where each 
image represents an edge orientation bin. Each value B(i, j) 
of each orientation bin image is the corresponding Laplacian 
intensity if the orientation falls into this bin, and 0 
otherwise. As we can see from Figures 3 and 4, in a given 
region in an image, there is typically one orientation that is 
dominant. We exploited this fact in our use of dominant 
edge orientations. This idea was first developed by [LW]. 
Dominant edge orientations are calculated as the total edge 
intensities of a given orientation divided by the sum of all 
edge intensities of all orientations in the same region. 
Dominant edge orientation features were used for training. 
We see some less distinguishing, yet nonetheless noticeable 
edges in some of the other bins in Figure 4. One of the most 
successful edge orientations was the horizontal one depicted 
in Figure 3. All of the possible dominant edge bins were 
offered to the training procedure except for bin 2 since it 
visually had nothing distinguishing about it. 

 

 

Figure 4 Edge orientation bins [2..6] for Honda in Figure 3 

Integral images (for constant time calculation of feature 
values [VJ]) were created from these orientation bin images 
and were used in the training procedure to find sums of edge 
intensities. 7 features were used in the training procedure. 
They were: dominant edge orientations (1, 3, 4, 5, and 6) 
and the redness feature. One of the problems we anticipated 
was that edges might not be so clearly defined in larger 
examples of Hondas. By larger we mean Hondas that are 
larger than 100x50 pixels. In the examples in our training 
set, edges determined by the Sobel masks are very 
distinctive since the images are very small. We feared that 
in larger examples of Hondas, edges would be represented 
by thicker lines, and result in different edge orientation 
maps. This did not happen since Hondas have crisp, well 
defined lines. Even in larger images, edges are very 
similarly defined compared to those of smaller images. 
Furthermore, it is the dominant edge orientation we are 
interested in when measuring feature values. Most of the 
weak classifiers in the strong classifier were in areas of the 
image in which their orientation was often the only one 
present. Therefore, any quantity of edges in such an area 
would be enough to help identify them positively. 

The redness features are not normalized in any way, 
and the scaling of these features must be handled 
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differently. Since the redness quantity in a rectangle directly 
depends on the area of the rectangle, threshold Ө of redness 
features is multiplied by the square of the scaling factor 
before the scaled redness feature is compared against it. 
This operation normalizes the scaling effect.  

4 EXPERIMENTAL RESULTS 

We have built a fast and reliable object recognizer 
based on small training set, consisting of 155 positive and 
760 negative images. It detects back views of Honda 
Accords with a 98.7% detection rate and 0.4% false positive 
rate on the training set.  Since there exist no standardized 
test sets for the detection of any cars, let alone one specific 
car, our machine was tested on a set that was created the 
same way the training set was created. Pictures were taken 
of cars around town. Our test set boasts 106 images that 
contain 101 positive examples of the Honda accord 2004. 
The positives in the set are in various scales and positions 
within the images. They are also taken from a variety of 
angles that are detectable by our program. The test set 
images themselves also come in a variety of sizes. The 
smallest images are basically the same size as those used by 
Viola (320 x 240 pixels). The largest image size in the test 
set is 640 x 480 pixels. Our object recognizer performed 
with 89.1% detection rate and 26 false detections on a test 
set containing 106 images of different sizes. These numbers 
are very good when compared to other systems such as 
those put forward by Viola [VJ] and Levi & Weiss [LW]. 
Viola’s face detection system was tested on a set that 
contained 130 images with 507 positives. Keep in mind that 
gathering such a test set is much easier when positives are 
faces. Our test has a similar number of images, yet a much 
smaller number of positives. Nevertheless, it is a sufficient 
comparison base to use as a basis for discussion. Viola gave 
statistics for the number of false positives his system 
produced at various detection rates. At a detection rate of 
roughly 89% (such as our system), his system produced 
roughly 35 false positives. He however used a much greater 
number of classifiers to achieve this result. Levi and Weiss 
used the same test set as Viola to evaluate their system and 
they achieve an 89% detection rate at the cost of roughly 45 
false positives. They used a 2500 item training database to 
achieve these results.  

The training procedure produced interesting results 
when it came to the selection of weak classifiers. Figures 5 
and 6 show the best and second best weak classifiers as 
chosen by the training algorithm.  

 

      

             Figure 5 WC1                                Figure 6 WC2 

The best weak classifier as determined by the system 
was an edge detector applied to the upper-left hand corner 
of the Honda. The small green box in Figure 5 defines this 

weak classifier. It detects the 45 degree edge that is 
dominant in this region. After reflecting back on our test set, 
it became evident that most of the positive examples share 
this attribute. It is not a weak classifier that we would have 
chosen by hand had we tried static selection of features. The 
second best weak classifier was a redness feature that 
detected the rear stop lights of the Honda (Figure 6). The 
selection of this feature validated our assumption that a 
redness feature used for detecting the rear stop lights would 
be very important. This just further emphasizes our claim 
that the basic features selected for a given detection problem 
should be custom selected before training starts to produce 
better results down the road. The other weak classifiers that 
were chosen identify many areas of horizontal edges that are 
common, redness features that define each stop light 
separately, and areas that do not have a specific orientation 
of edge. An example of such an occurrence is the area just 
below the license plates. This area is mostly void of any 
vertical edges.  

The speed at which images are processed is measured. 
Images as small as 150 x 120 pixels are processed in 0.05 
seconds. Images of size 170 x 227 pixels are processed in 
0.18 seconds. Standard size images similar to those used in 
Viola [VJ] and other papers of size 320 x 240 are processed 
in 0.49 seconds. We consider this to be real time. It takes 
more and more time to process larger pictures. For example, 
it takes 1.93 seconds to process a picture of size 500 x 253. 
The size of the picture directly impacts the time it takes to 
process it. This is logical since larger images contain more 
sub windows that must be searched. In fact, the running 
time is proportional to the number of features contained in a 
window of a given size. In our implementation, widths and 
heights of sub windows grow by 10%. The time complexity 
is therefore O(AT log(b/c)), where b is the image width, c is 
the minimal example width, T is the number of WCs in the 
strong classifier and A is the area of the searched window, 
since there are O(A) features of a given size, and O(log(b/c)) 
incremental steps. When T is fixed, the complexity may also 
be expressed as O(b2 log(b)), where b2≈A. We see that the 
complexity grows faster than quadratic time with respect to 
image width.  

5 CONCLUSIONS 

We began our research with the following question. Is 
there any ‘magic’ software package that can find any type of 
object in an image, reasonable accurately, and in real time, 
merely by replacing the positive and negative sets? If the 
answer was yes, there would not be so much research in this 
area. However, the AdaBoost software framework appears 
to be widely adopted for real time object detection.  

The training program can be considered as being 
composed of three components: an AdaBoost classifier, a 
Feature set, and a Training set. The AdaBoost classifier is a 
general framework, which can be safely claimed to be 
applicable to the recognition of any type of object 
efficiently, provided the object roughly appears with the 
same orientation and angle (e.g. straight upfront faces, or 
backs of horizontal cars, such as our positive).  
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The feature sets are not as general. We show that the 
feature set for recognizing faces is completely different 
(practically disjoint) from the feature set for finding cars. 
Some existing articles added new features to help in 
recognizing objects which are different from faces, but we 
did not see anyone actually making the two sets disjoint. On 
the other hand, the same set of features could be used to 
recognize different objects, by simply replacing one training 
set with the other. For instance, we believe that one could 
equally well recognize the back of another car such as the 
Toyota Camry 2004 by collecting the corresponding 
pictures for the training set and using the version of 
AdaBoost described in [S].  In addition to defining a good 
feature set for Honda’s, we have proposed in [S] a general 
elimination step in the program, by introducing a threshold 
for the quality of a feature, to reduce training time. It is an 
open area to further elaborate on the applicability of 
common feature sets, fully or partially, in recognition of 
some objects. One can always merge two sets into one, 
threshold them for triviality on a given training set [S], and 
then claim that the same feature set is applicable to 
recognition of two totally distinct objects. For instance, one 
can add the set of dominant edge orientations to Viola’s set 
for face detectors, and use them to train either faces or cars. 
When recognizing faces from appropriate training sets, 
redness features are eliminated, while many dominant edge 
orientation features may remain. When the same set is 
applied to recognize Honda’s, all of Viola’s features are 
basically removed first before real training, with the idea 
that we proposed in [S] (to the best of our knowledge, our 
system is the first real time AdaBoost based system that 
recognizes an object without Viola’s features). But one 
cannot claim that this process can be continued to 
eventually include any type of objects, given the desired 
performance metrics. A new type of object may always exist 
that has its specific feature that works ideally for it, and 
needs to be added. An example is a circular object where a 
hypothetical roundness measure may be used to help 
identify it. We believe that one can further develop the idea 
presented in [S] of introducing an automatic feature 
triviality test and link it to this discussion. Simply speaking, 
features from a large set are put through this test, and only 
some of them pass. Given two objects to recognize, one can 
define a measure of their similarity by looking at the 
number of common and different remaining features.  

There exists no ‘magic’ answer that can easily 
explain the effort required to apply the techniques discussed 
here and in [S] to the recognition of other objects such as 
faces. More research needs to be done to be able to 
quantitatively answer this point. The simple answer is that 
other types of cars can be recognized just be replacing the 
training sets in this work. Our program is not restricted to 
only recognizing cars. We believe that dominant edge 
orientation features are powerful ones, and are applicable in 
many scenarios. For instance, fire extinguishers mainly have 
horizontal and vertical edges. Also, the redness feature is 
applicable in searching for fire extinguishers, given that fire 
extinguishers are mostly red. Therefore are confident that 
fire extinguishers (which are vertical in position and 
visually of the same shape in robotic vision applications) 

can be recognized with our software, because they appear 
quite simple to recognize, much simpler than the backs of 
cars. Our system might also recognize fire extinguishers 
even if dominant edge orientation features are removed (that 
is, based solely on the redness feature), because of their 
clear rectangular shape, and typical red color.  

REFERENCES 

[E]  N. Efford, Digital Image Processing: a practical 
introduction using Java Addison Wesley, 2000. 

[FS]  Y. Freund, R.E. Schapire, A decision-theoretic 
generalization on on-line learning and an application to 
boosting, Journal of Computer and System Sciences, 
55(1):119–139, August 1997. 

[LW] K. Levi, Y. Weiss, Learning Object Detection from a 
Small Number of Examples: the Importance of Good 
Features, International Conference on Computer Vision 
and Patern Recognition (CVPR), 2004. 

[LYT] H. Luo, J. Yen, D. Tretter, An Efficient Automatic 
Redeye Detection and Correction Algorithm, 17th IEEE 
International Conference on Pattern Recognition, 
(ICPR'04) V. 2, Aug. 23 - 26, 2004, Cambridge UK.  

[PC] V.S. Petrovic and T.F. Cootes, Analysis of Features for 
Rigid Structure Vehicle Type Recognition, Proc. 
British Machine Vision Conf. 2004, Vol.2, pp.587-596. 

[S] M. Stojmenovic, Real time object detection in images 
based on an AdaBoost machine learning approach and a 
small training set, Master thesis, School of Computer 
Science, Carleton University, Ottawa, May 2005. 

[TC] J. Thureson, S. Carlsson, Finding Object Categories in 
Cluttered Images Using Minimal Shape Prototypes, 13th 
Scandinavian Conference on Image Analysis SCIA, 
Goteborg, Sweden, 2003. 

[VJ] P. Viola, M. Jones, Robust real-time face detection, 
Int. J. Computer Vision, 57, 2, 137-154, 2004. 

ACKNOWLEDGEMENT 

This research was partially supported by the Ontario 
Graduate Scholarship (OGS) grant. We thank them for their 
support. 


