
 1

Copyright © 2005 Inderscience Enterprises Ltd.

Real time car detection in images based
on an AdaBoost machine learning
approach and a small training set

Milos Stojmenovic

SITE, University of Ottawa, Ottawa
Milos22@gmail.com

Abstract: Our primary interest is to build fast and
reliable object recognizers in images based on small training
sets. This is important in cases where the training set needs
to be built mostly manually, as in the case that we studied,
the recognition of the Honda Accord 2004 from rear views.
Our experiments indicated that the set of features used by
Viola and others for face recognition was inefficient for our
problem; therefore, each object requires its own custom-
made set of features for real time and accurate recognition.
We described a set of appropriate feature types for the
considered car recognition problem, including a redness
measure and dominant edge orientations. The existing edge
orientation bin division was improved by shifting so that all
horizontal (vertical, respectively) edges belong to the same
bin. This feature set was a basis for building a fast and
reliable car recognizer based on small training set,
consisting of 155 positive and 760 negative images. It
detects back views of Honda Accords with a 98.7%
detection rate and 0.4% false positive rate on the training
set, and with 89.1% detection rate and a 1.48 x 10-6 false
positive rate on a test set of 106 images containing roughly
17.5 million tested sub windows.

1 INTRODUCTION

The goal of this article is to analyze the capability of
current machine learning techniques of solving other similar
image retrieval problems. By ‘capability’, we mean real
time performance, a high detection rate, low false positive
rate, and learning with a small training set. We are
particularly interested in cases where the training set is not
easily available, and most of it needs to be manually
created.

We will apply machine learning to the detection of
rears of cars in images. Specifically, the system should be
able to recognize cars of a certain type such as a Honda
Accord, 2004. Therefore, input should be an arbitrary
image, and the result should be that same image with a
rectangle around any occurrence of the car we are searching
for. In addition to precision of detection, the second major
goal is real time performance. The program should quickly
find all the cars of the given type and position in an image,
in the same way that Viola [VJ] finds all the heads. The
definition of ‘real time’ depends on the application, but
generally speaking we would like to receive an answer for
testing an image within a second or so. The response time
depends on the size of the tested image, thus what appears
to be real time for smaller images may not be so for larger
ones.

Finally, our goal is to also design the object detection
system based on a small number of training examples. We
envision applications in cases where training examples are
not easily available. For instances, in the case that we
studied, we had to take photos of back views of a few
hundred Honda Accords and other cars to create training
sets, since virtually no positive images were found on the
Internet. In such cases, it is difficult to expect that one can
have tens of thousands of images readily available, which
was the case for the face detection problem. The additional
benefit of a small training set is that the training time is
reduced. This enabled us to perform a number of training
attempts, adjust the set of examples, adjust the set of
features, test various sets of weak classifiers, and otherwise
analyze the process by observing the behaviour of the
generated classifiers.

We will apply machine learning methods in an attempt
to solve the problem of detecting rears of a particular car
type since they appear to be appropriate given the setting of
the problem. Machine learning in similar image retrieval has
proven to be reliable in situations where the target object
does not change orientation. A classic application has
become the detection of upright forward facing heads as
proposed by Viola [VJ]. Cars are typically found in the
same orientation with respect to the road. They can be
photographed from various angles (front, side …) but they
are rarely found up-side-down. The situation we are
interested in is the rear view of cars. This situation is
typically used in monitoring traffic since license plates are
universally found at the rears of vehicles. It is also the target
of choice of police traffic monitoring equipment, since their
cameras are usually positioned to film the license plates for
the purposes of vehicle recognition. Therefore, hardware is
already in place for various software applications in vehicle
detection.

The positive images were taken such that all of the
Hondas have the same general orthogonal orientation with
respect to the camera. Some deviation occurred in the pitch,
yaw and roll of these images, which might be why the
resulting detector has such a wide range of effectiveness.
The machine that was built is effective for the following
deviations in angles: pitch -150, yaw -300 to 300, and roll -
150 to 150. This means that pictures of Hondas taken from
angles that are off by the stated amounts are still detected by
the program.

This article discusses only the feature selection for our
car detection system. The AdaBoost based framework and
the remaining issues are discussed in the full version of this
article [S].

2 RELATED WORK

We are not aware of any existing solution that
recognizes back view of any particular type of cars. We
therefore reviewed solutions to more general problems.
Existing vehicle detection systems, such as those that try to
drive cars automatically along a highway do not actually
detect cars on the road. They simply assume that anything
that is moving on the highway is a vehicle. In scientific
literature, some car recognition solutions also exist that are

mailto:Milos22@gmail.com

 MILOS STOJMENOVIC

based on shape detectors [TC]. An existing shape matching
based approach [TC] is reported to have a 60%-85%
detection rate, which is below our stated goals. The
approach based on nearest neighbour matching [PC] is too
sensitive to viewpoint change, while the approach based on
PCA (Principal Component Analysis) [PC] is not a real time
system.

The most popular example of object detection is the
detection of faces. The fundamental application that gave
credibility to AdaBoost (proposed originally in [FS]) was
Viola’s real time face finding system [VJ]. AdaBoost is the
concrete machine learning method that was used by Viola to
implement his system. In this approach, positive and
negative training sets are separated by a cascade of
classifiers, each constructed by AdaBoost. Real time
performance is achieved by selecting features that can be
computed in constant time (after a pre-processing step). The
training time of the face detector appears to be slow, even
taking months according to some reports.

 Viola’s face finding system has been modified in
literature in a number of articles. The modifications include
inclusion of new features. Of particular interest to us were
features based on gradient histograms [LW], and those
based on the color of certain parts of an image [LYT]. The
AdaBoost machine itself was modified in literature in
several ways. We have considered all modifications
proposed in literature, and adopted ideas that were
considered helpful for achieving our goals.

 We stress again that most of the successful
applications of AdaBoost used a large training set. In
Viola’s original face detector [VJ], 10,000 images were
used in the training set. The smallest known training
database for face detection was by Levi and Weiss [LW].
They started to achieve detection rates in the 90% category
when the number of positive examples reached 250. The
number of negative examples was not specified at this level,
but the authors say that they randomly downloaded 10,000
images from the Internet containing over 100,000,000 sub
windows. They only moderately increased their detection
rates as the size of the positive set grew drastically.

We apply a similar general design as in [VJ]. The
object search is based on a machine that takes in a square
region of size equal to or greater than 24x24 pixels (for face
search) [VJ] (we had a limit of 100x150 for the car search)
as input and declares whether or not this region contains the
searched object. We use such a machine to analyze the
entire image. We pass every sub window of every scale
through this machine to find all sub windows that contain
faces. A sliding window technique is therefore used. The
window in [VJ] is shifted 1 pixel after every analysis of a
sub window (we used a 2 pixels shift to speed things up,
without notable negative impact). Both dimensions of the
sub window grow in both length and width 10% every time
all of the sub windows of the previous size were
exhaustively searched.

One of the key contributions in [VJ] was the
introduction of a new image representation called the
“Integral Image”, which allows the features used by their
detector to be computed very quickly. In the pre-processing
step, Viola [VJ] finds the sums ii(x,y) of pixel intensities (or
other measurements) i(x’,y’) for all pixels (x’,y’) such that

x’≤x, y’≤y. This can be done in one pass over the original
image using the following recurrences: s(x, y) = s(x, y − 1) +
i (x, y), ii (x, y) = ii (x − 1, y) + s(x, y) (where s(x, y) is the
cumulative row sum, s(x,−1) = 0, and ii (−1, y) = 0). The
feature value in the rectangle with corners (x1,y1)
(bottommost), (x2,y2), (x3,y3) and (x4,y4) (uppermost) is then
ii(x1,y1)+ii(x4,y4)-ii(x2,y2)-ii(x3,y3) [VJ].

3 FEATURES USED IN THE CAR RECOGNITION

A feature is a function that maps an image into a real
number. Our experiments indicated that the set of features
used by Viola [VJ] was inefficient for our problem. Viola’s
Haar wavelets were eliminated from the training procedure
completely early in the implementation and testing phase
since they failed to produce any usable results. Much
programming effort went into incorporating them into the
training framework. Not only were their cumulative errors
in the training process too great to be useful, but their very
presence in the feature set greatly, yet fruitlessly, increased
training time. Therefore, each problem requires its own
custom-made set of features. We will give more details on
the features used in the training procedure here. Two types
of basic features were used. They were redness features, and
dominant edge orientation features. The dominant edge
orientation and redness features proved themselves to be
much better than Viola’s original set. This only confirmed
our view that specific types of features need to be used in
specific applications. Not all features are equally useful.

3.1. Redness Features

The redness features we refer to are taken from the
work of [LYT]. They concentrated on finding circular red
regions in images. Their goal was to find and fix red eyes in
pictures taken of people. Most of their work focused on the
shape of the red regions found, rather than the techniques
involved in finding the colour red. We borrow their idea of
finding predominantly red regions. Our work differs in the
fact that we look for red regions that signify the stop lights
of the Honda accord, as opposed to human eyes. Therefore,
our red regions are rectangular, and much larger than theirs.
Fig 1 shows an example of a redness feature determined by
the training process.

Figure 1 – Redness feature

A special ‘redness’ colour space was formed during
pre-processing to assist in the detection of red areas. This
colour space was taken from [LYT], and is a one
dimensional linear combination of the RGB colour space.
All of the positive and negative inputs in the training set are
RGB colour images which means that each of their pixels is
represented by three 8-bit numbers that represent the
quantity of red, green and blue in a pixel, respectively. Each

REAL TIME CAR DETECTION IN IMAGES BASED ON AN ADABOOST MACHINE LEARNING APPROACH AND A
SMALL TRAINING SET

pixel in the redness colour space is defined as follows:
Redness = 4R-3G+B [LYT]. The integral image
computation (the technique is proposed in [VJ]) was applied
to the redness image to produce one of the inputs to the
training procedure. The areas of the redness training
features were determined in constant time using the integral
image of the redness image.

3.2 Edge Orientation Features

Several dominant edge orientation features were used in
the training algorithm. A well known greyscale image Sobel
gradient mask (three pixels by three pixels) [E] is used in
determining the location of edges in an image. The mask is
applied in both coordinate directions, and the combined
intensities (called Laplacian intensities, based on Euclidean
distance) are taken. One more detail of our implementation
is the threshold that was placed on the intensities of the
Laplacian values. We used a threshold of 80 to eliminate the
faint edges that are not useful. A similar threshold was
employed in [LW]. The orientations of each pixel are
calculated from its intensity in both directions. The
orientations are divided into 6 bins so that similar
orientations can be grouped together. The whole circle is
divided into 6 bins. It is important to note that the
orientations of the 00, 900, and 1800 bins are critical in
identifying Hondas. They are important since Hondas
mainly have horizontal and vertical edges. The division of
the bins which places 00 or 900 at the border of two bins
poses problems since all vertical and horizontal edges can
fall into two bins. We handle this problem by shifting all of
the bins by 15 degrees. Note that [LW] did not mention any
bin shifting, so we believe that they used non-shifted bins.
They did however vary the number of bins from 4-8.
Effectively the number of bins does not impact the
performance much, but these boundaries are avoided. To fit
all of the orientations into the 0-1800 range, we add 1800 if
the angle is smaller than 00, and subtract 180 if the angle is
greater than 1800. The effects of these transformations can
be seen in Figure 2. In Figure 3, we see a Honda accord and
its corresponding edge orientation image for the first bin
[-150,+150]∪[+1650,+1950]. Bin shifting contributed
significantly to the accuracy of the system. The detection
rate improved from 74.3% to 89.1%, while the number of
false positives decreased from 168 to 26.

Figure 2 Six orientation bins

Figure 3 Honda and corresponding horizontal edges

Since we use 6 bins, we create 6 images where each
image represents an edge orientation bin. Each value B(i, j)
of each orientation bin image is the corresponding Laplacian
intensity if the orientation falls into this bin, and 0
otherwise. As we can see from Figures 3 and 4, in a given
region in an image, there is typically one orientation that is
dominant. We exploited this fact in our use of dominant
edge orientations. This idea was first developed by [LW].
Dominant edge orientations are calculated as the total edge
intensities of a given orientation divided by the sum of all
edge intensities of all orientations in the same region.
Dominant edge orientation features were used for training.
We see some less distinguishing, yet nonetheless noticeable
edges in some of the other bins in Figure 4. One of the most
successful edge orientations was the horizontal one depicted
in Figure 3. All of the possible dominant edge bins were
offered to the training procedure except for bin 2 since it
visually had nothing distinguishing about it.

Figure 4 Edge orientation bins [2..6] for Honda in Figure 3

Integral images (for constant time calculation of feature
values [VJ]) were created from these orientation bin images
and were used in the training procedure to find sums of edge
intensities. 7 features were used in the training procedure.
They were: dominant edge orientations (1, 3, 4, 5, and 6)
and the redness feature. One of the problems we anticipated
was that edges might not be so clearly defined in larger
examples of Hondas. By larger we mean Hondas that are
larger than 100x50 pixels. In the examples in our training
set, edges determined by the Sobel masks are very
distinctive since the images are very small. We feared that
in larger examples of Hondas, edges would be represented
by thicker lines, and result in different edge orientation
maps. This did not happen since Hondas have crisp, well
defined lines. Even in larger images, edges are very
similarly defined compared to those of smaller images.
Furthermore, it is the dominant edge orientation we are
interested in when measuring feature values. Most of the
weak classifiers in the strong classifier were in areas of the
image in which their orientation was often the only one
present. Therefore, any quantity of edges in such an area
would be enough to help identify them positively.

The redness features are not normalized in any way,
and the scaling of these features must be handled

 MILOS STOJMENOVIC

differently. Since the redness quantity in a rectangle directly
depends on the area of the rectangle, threshold Ө of redness
features is multiplied by the square of the scaling factor
before the scaled redness feature is compared against it.
This operation normalizes the scaling effect.

4 EXPERIMENTAL RESULTS

We have built a fast and reliable object recognizer
based on small training set, consisting of 155 positive and
760 negative images. It detects back views of Honda
Accords with a 98.7% detection rate and 0.4% false positive
rate on the training set. Since there exist no standardized
test sets for the detection of any cars, let alone one specific
car, our machine was tested on a set that was created the
same way the training set was created. Pictures were taken
of cars around town. Our test set boasts 106 images that
contain 101 positive examples of the Honda accord 2004.
The positives in the set are in various scales and positions
within the images. They are also taken from a variety of
angles that are detectable by our program. The test set
images themselves also come in a variety of sizes. The
smallest images are basically the same size as those used by
Viola (320 x 240 pixels). The largest image size in the test
set is 640 x 480 pixels. Our object recognizer performed
with 89.1% detection rate and 26 false detections on a test
set containing 106 images of different sizes. These numbers
are very good when compared to other systems such as
those put forward by Viola [VJ] and Levi & Weiss [LW].
Viola’s face detection system was tested on a set that
contained 130 images with 507 positives. Keep in mind that
gathering such a test set is much easier when positives are
faces. Our test has a similar number of images, yet a much
smaller number of positives. Nevertheless, it is a sufficient
comparison base to use as a basis for discussion. Viola gave
statistics for the number of false positives his system
produced at various detection rates. At a detection rate of
roughly 89% (such as our system), his system produced
roughly 35 false positives. He however used a much greater
number of classifiers to achieve this result. Levi and Weiss
used the same test set as Viola to evaluate their system and
they achieve an 89% detection rate at the cost of roughly 45
false positives. They used a 2500 item training database to
achieve these results.

The training procedure produced interesting results
when it came to the selection of weak classifiers. Figures 5
and 6 show the best and second best weak classifiers as
chosen by the training algorithm.

 Figure 5 WC1 Figure 6 WC2

The best weak classifier as determined by the system
was an edge detector applied to the upper-left hand corner
of the Honda. The small green box in Figure 5 defines this

weak classifier. It detects the 45 degree edge that is
dominant in this region. After reflecting back on our test set,
it became evident that most of the positive examples share
this attribute. It is not a weak classifier that we would have
chosen by hand had we tried static selection of features. The
second best weak classifier was a redness feature that
detected the rear stop lights of the Honda (Figure 6). The
selection of this feature validated our assumption that a
redness feature used for detecting the rear stop lights would
be very important. This just further emphasizes our claim
that the basic features selected for a given detection problem
should be custom selected before training starts to produce
better results down the road. The other weak classifiers that
were chosen identify many areas of horizontal edges that are
common, redness features that define each stop light
separately, and areas that do not have a specific orientation
of edge. An example of such an occurrence is the area just
below the license plates. This area is mostly void of any
vertical edges.

The speed at which images are processed is measured.
Images as small as 150 x 120 pixels are processed in 0.05
seconds. Images of size 170 x 227 pixels are processed in
0.18 seconds. Standard size images similar to those used in
Viola [VJ] and other papers of size 320 x 240 are processed
in 0.49 seconds. We consider this to be real time. It takes
more and more time to process larger pictures. For example,
it takes 1.93 seconds to process a picture of size 500 x 253.
The size of the picture directly impacts the time it takes to
process it. This is logical since larger images contain more
sub windows that must be searched. In fact, the running
time is proportional to the number of features contained in a
window of a given size. In our implementation, widths and
heights of sub windows grow by 10%. The time complexity
is therefore O(AT log(b/c)), where b is the image width, c is
the minimal example width, T is the number of WCs in the
strong classifier and A is the area of the searched window,
since there are O(A) features of a given size, and O(log(b/c))
incremental steps. When T is fixed, the complexity may also
be expressed as O(b2 log(b)), where b2≈A. We see that the
complexity grows faster than quadratic time with respect to
image width.

5 CONCLUSIONS

We began our research with the following question. Is
there any ‘magic’ software package that can find any type of
object in an image, reasonable accurately, and in real time,
merely by replacing the positive and negative sets? If the
answer was yes, there would not be so much research in this
area. However, the AdaBoost software framework appears
to be widely adopted for real time object detection.

The training program can be considered as being
composed of three components: an AdaBoost classifier, a
Feature set, and a Training set. The AdaBoost classifier is a
general framework, which can be safely claimed to be
applicable to the recognition of any type of object
efficiently, provided the object roughly appears with the
same orientation and angle (e.g. straight upfront faces, or
backs of horizontal cars, such as our positive).

REAL TIME CAR DETECTION IN IMAGES BASED ON AN ADABOOST MACHINE LEARNING APPROACH AND A
SMALL TRAINING SET

The feature sets are not as general. We show that the
feature set for recognizing faces is completely different
(practically disjoint) from the feature set for finding cars.
Some existing articles added new features to help in
recognizing objects which are different from faces, but we
did not see anyone actually making the two sets disjoint. On
the other hand, the same set of features could be used to
recognize different objects, by simply replacing one training
set with the other. For instance, we believe that one could
equally well recognize the back of another car such as the
Toyota Camry 2004 by collecting the corresponding
pictures for the training set and using the version of
AdaBoost described in [S]. In addition to defining a good
feature set for Honda’s, we have proposed in [S] a general
elimination step in the program, by introducing a threshold
for the quality of a feature, to reduce training time. It is an
open area to further elaborate on the applicability of
common feature sets, fully or partially, in recognition of
some objects. One can always merge two sets into one,
threshold them for triviality on a given training set [S], and
then claim that the same feature set is applicable to
recognition of two totally distinct objects. For instance, one
can add the set of dominant edge orientations to Viola’s set
for face detectors, and use them to train either faces or cars.
When recognizing faces from appropriate training sets,
redness features are eliminated, while many dominant edge
orientation features may remain. When the same set is
applied to recognize Honda’s, all of Viola’s features are
basically removed first before real training, with the idea
that we proposed in [S] (to the best of our knowledge, our
system is the first real time AdaBoost based system that
recognizes an object without Viola’s features). But one
cannot claim that this process can be continued to
eventually include any type of objects, given the desired
performance metrics. A new type of object may always exist
that has its specific feature that works ideally for it, and
needs to be added. An example is a circular object where a
hypothetical roundness measure may be used to help
identify it. We believe that one can further develop the idea
presented in [S] of introducing an automatic feature
triviality test and link it to this discussion. Simply speaking,
features from a large set are put through this test, and only
some of them pass. Given two objects to recognize, one can
define a measure of their similarity by looking at the
number of common and different remaining features.

There exists no ‘magic’ answer that can easily
explain the effort required to apply the techniques discussed
here and in [S] to the recognition of other objects such as
faces. More research needs to be done to be able to
quantitatively answer this point. The simple answer is that
other types of cars can be recognized just be replacing the
training sets in this work. Our program is not restricted to
only recognizing cars. We believe that dominant edge
orientation features are powerful ones, and are applicable in
many scenarios. For instance, fire extinguishers mainly have
horizontal and vertical edges. Also, the redness feature is
applicable in searching for fire extinguishers, given that fire
extinguishers are mostly red. Therefore are confident that
fire extinguishers (which are vertical in position and
visually of the same shape in robotic vision applications)

can be recognized with our software, because they appear
quite simple to recognize, much simpler than the backs of
cars. Our system might also recognize fire extinguishers
even if dominant edge orientation features are removed (that
is, based solely on the redness feature), because of their
clear rectangular shape, and typical red color.

REFERENCES

[E] N. Efford, Digital Image Processing: a practical
introduction using Java Addison Wesley, 2000.

[FS] Y. Freund, R.E. Schapire, A decision-theoretic
generalization on on-line learning and an application to
boosting, Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[LW] K. Levi, Y. Weiss, Learning Object Detection from a
Small Number of Examples: the Importance of Good
Features, International Conference on Computer Vision
and Patern Recognition (CVPR), 2004.

[LYT] H. Luo, J. Yen, D. Tretter, An Efficient Automatic
Redeye Detection and Correction Algorithm, 17th IEEE
International Conference on Pattern Recognition,
(ICPR'04) V. 2, Aug. 23 - 26, 2004, Cambridge UK.

[PC] V.S. Petrovic and T.F. Cootes, Analysis of Features for
Rigid Structure Vehicle Type Recognition, Proc.
British Machine Vision Conf. 2004, Vol.2, pp.587-596.

[S] M. Stojmenovic, Real time object detection in images
based on an AdaBoost machine learning approach and a
small training set, Master thesis, School of Computer
Science, Carleton University, Ottawa, May 2005.

[TC] J. Thureson, S. Carlsson, Finding Object Categories in
Cluttered Images Using Minimal Shape Prototypes, 13th
Scandinavian Conference on Image Analysis SCIA,
Goteborg, Sweden, 2003.

[VJ] P. Viola, M. Jones, Robust real-time face detection,
Int. J. Computer Vision, 57, 2, 137-154, 2004.

ACKNOWLEDGEMENT

This research was partially supported by the Ontario
Graduate Scholarship (OGS) grant. We thank them for their
support.

