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Abstract— Our primary interest is to build fast and 
reliable object recognizers in images based on small training sets. 
This is important in cases where the training set needs to be built 
mostly manually, as in the case that we studied, the recognition of 
the Honda Accord 2004 from rear views. We described a novel 
variant of the AdaBoost based learning algorithm, which builds a 
strong classifier by incremental addition of weak classifiers 
(WCs) that minimize the combined error of the already selected 
WCs. Each WC is trained only once, and examples do not change 
their weights. We proposed to pre-eliminate features whose 
cumulative error of corresponding best WCs exceeds a 
predetermined threshold value. We tested two straightforward 
definitions of cumulative error. In both cases, we showed that, 
when over 97% of the initial features are eliminated at the very 
beginning from further training, training time is drastically 
reduced while having little impact on the quality of the pool of 
available WCs. This is a novel method that has reduced the 
training set WC quantity to less than 3% of its original number, 
greatly speeding up training time, and showing no negative 
impact on the quality of the final classifier. Our experiments 
indicated that the set of features used by Viola and Jones and 
others for face recognition was inefficient for our problem; 
therefore, each object requires its own custom-made set of 
features for real time and accurate recognition. Our training 
method, combined with the selection of appropriate features, has 
resulted in finding a very accurate classifier containing merely 30 
weak classifiers. Compared to existing literature, we have overall 
achieved the design of a real time object detection machine with 
the least number of examples, the least number of weak 
classifiers, the fastest training time, and with competitive 
detection and false positive rates. 
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I.  INTRODUCTION 
The goal of this article is to analyze the capability of 

current machine learning techniques of detecting objects in 
images different from faces. By ‘capability’ we mean real time 
performance, a high detection rate, low false positive rate, and 
learning with a small training set. We are particularly interested 
in cases where the training set is not easily available, and most 
of it needs to be created manually. We have applied machine 
learning to the detection of rears of cars in images. Specifically, 
the system should be able to recognize cars of a certain type 
such as a Honda Accord, 2004. Therefore, input should be an 

arbitrary image, and the result should be that same image with 
a rectangle around any occurrence of the car we are searching 
for. In addition to precision of detection, the second major goal 
is real time performance. The program should quickly find all 
the cars of the given type and position in an image, in the same 
way that Viola and Jones [VJ] find all the heads. The definition 
of ‘real time’ depends on the application, but generally 
speaking we would like to receive an answer for testing an 
image within a second or so. The response time depends on the 
size of the tested image, thus what appears to be real time for 
smaller images may not be so for larger ones. 

Finally, our goal is to also design the object detection 
system based on a small number of training examples. We 
envision applications in cases where training examples are not 
easily available. For instance, in the case that we studied, we 
had to take photos of back views of a few hundred Honda 
Accords and other cars to create training sets, since virtually no 
positive images were found on the Internet. In such cases, it is 
difficult to expect that one can have tens of thousands of 
images readily available, which was the case for the face 
detection problem. The additional benefit of a small training set 
is that the training time is reduced. This enabled us to perform 
a number of training attempts, adjust the set of examples, 
adjust the set of features, test various sets of weak classifiers, 
and otherwise analyze the process by observing the behaviour 
of the generated classifiers.  

We will apply machine learning methods in an attempt to 
solve the problem of detecting rears of a particular car type 
since they appear to be appropriate given the setting of the 
problem. Machine learning in similar image retrieval has 
proven to be reliable in situations where the target object does 
not change orientation. A classic application has become the 
detection of upright forward facing heads as proposed by Viola 
and Jones [VJ]. Cars are typically found in the same orientation 
with respect to the road. They can be photographed from 
various angles (front, side …) but they are rarely found up-
side-down. The situation we are interested in is the rear view of 
cars. This situation is typically used in monitoring traffic since 
license plates are universally found at the rears of vehicles. It is 
also the target of choice of police traffic monitoring equipment, 
since their cameras are usually positioned to film the license 
plates for the purposes of vehicle recognition. Therefore, 
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hardware is already in place for various software applications 
in vehicle detection. 

The positive images were taken such that all of the Hondas 
have the same general orthogonal orientation with respect to 
the camera. Some deviation occurred in the pitch, yaw and roll 
of these images, which might be why the resulting detector has 
such a wide range of effectiveness. The machine that was built 
is effective for the following deviations in angles: pitch -150, 
yaw -300 to 300, and roll -150 to 150. This means that pictures 
of Hondas taken from angles that are off by the stated amounts 
are still detected by the program.  

Section 2 presents the related work. The features used in 
our car detection system were described in section 3 (details 
are given in a companion article [S]). Our main contribution, 
pre-elimination of features, is elaborated on in section 4. 
Section 5 describes the AdaBoost based learning algorithm 
used for our object detection problem. Experimental results are 
given in section 6. Conclusions and references complete this 
article.  

II. LITERATURE REVIEW 
We are not aware of any existing solution that recognizes 

back view of any particular type of cars. We therefore reviewed 
solutions to more general problems. Existing vehicle detection 
systems, such as those that try to drive cars automatically along 
a highway do not actually detect cars on the road. They simply 
assume that anything that is moving on the highway is a 
vehicle. In scientific literature, some car recognition solutions 
also exist that are based on shape detectors [TC]. An existing 
shape matching based approach [TC] is reported to have a 
60%-85% detection rate, which is below our stated goals. The 
approach based on nearest neighbour matching [PC] is too 
sensitive to viewpoint change, while the approach based on 
PCA (Principal Component Analysis) [PC] is not a real time 
system.  

The most popular example of object detection is the 
detection of faces. The fundamental application that gave 
credibility to Adaboost (proposed originally in [FS]) was Viola 
and Jones’ real time face finding system [VJ]. Adaboost is the 
concrete machine learning method that was used by Viola and 
Jones to implement their system. In this approach, positive and 
negative training sets are separated by a cascade of classifiers, 
each constructed by Adaboost. Real time performance is 
achieved by selecting features that can be computed in constant 
time (after a pre-processing step). The training time of the face 
detector appears to be slow, even taking months according to 
some reports. One of the key contributions in [VJ] was the 
introduction of a new image representation called the “Integral 
Image”, which allows the features used by their detector to be 
computed very quickly. 

 Viola and Jones’ face finding system has been modified in 
literature in a number of articles. The modifications include 
addition of new features. Of particular interest to us were 
features based on gradient histograms [LW], and those based 
on the color of certain parts of an image [LYT]. The Adaboost 
machine itself was modified in literature in several ways. We 
have considered all of the modifications proposed in literature, 

and adopted ideas that were considered helpful for achieving 
our goals. 

 We again stress that most of the successful applications of 
AdaBoost used a large training set. In Viola and Jones’ original 
face detector [VJ], 10,000 images were used in the training set. 
The smallest known training database for face detection was by 
Levi and Weiss [LW]. They started to achieve detection rates 
in the 90% category when the number of positive examples 
reached 250. The number of negative examples was not 
specified at this level, but the authors say that they randomly 
downloaded 10,000 images from the Internet containing over 
100,000,000 sub windows. They only moderately increased 
their detection rates as the size of the positive set grew 
drastically. 

We apply a similar general design as in [VJ]. The object 
search is based on a machine that takes in a square region of 
size equal to or greater than 24x24 pixels (for the face search) 
[VJ] (we had a limit of 100x150 for the car search) as input and 
declares whether or not this region contains the searched 
object. We use such a machine to analyze the entire image. We 
pass every sub window of every scale through this machine to 
find all sub windows that contain faces. A sliding window 
technique is therefore used. The window in [VJ] is shifted 1 
pixel after every analysis of a sub window (we used a 2 pixels 
shift to speed things up, without notable negative impact). Both 
dimensions of the sub window grow in both length and width 
10% every time all of the sub windows of the previous size 
were exhaustively searched. 

III. FEATURES USED IN RECOGNITION 
We described a set of appropriate feature types for the 

considered recognition problem, including a redness measure 
and dominant edge orientations, in companion article [S], 
where details and formal definitions are given. The existing 
edge orientation bin division was improved by shifting, so that 
all horizontal (vertical, respectively) edges belong to the same 
bin.  

A feature is a function that maps an image into a real 
number. Our experiments indicated that the set of features used 
by Viola and Jones [VJ] was inefficient for our problem. Viola 
and Jones’ Haar wavelets were eliminated from the training 
procedure completely early in the implementation and testing 
phase since they failed to produce any usable results. Not only 
were their cumulative errors in the training process too great to 
be useful, but their very presence in the feature set greatly, yet 
fruitlessly, increased training time. Therefore, each problem 
requires its own custom-made set of features. Two types of 
basic features were used. They were redness features (see also 
[LYT], and dominant edge orientation features (see also [LW]). 
Figures 1 and 2 show the best and second best weak classifiers 
as chosen by our training algorithm.  

Figure 1.  WC1          Figure 2.   WC2 
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The best weak classifier as determined by the system was 
an edge detector applied to the upper-left hand corner of the 
Honda. The small green box in Figure 4 defines this weak 
classifier. It detects the 45 degree edge that is dominant in this 
region. The second best weak classifier was a redness feature 
that detected the rear stop lights of the Honda (Figure 2). The 
selection of this feature validated our assumption that a redness 
feature used for detecting the rear stop lights would be very 
important. The other weak classifiers that were chosen identify 
many areas of horizontal edges that are common, redness 
features that define each stop light separately, and areas that do 
not have a specific orientation of edge. An example of such an 
occurrence is the area just below the license plates. This area is 
mostly void of any vertical edges.  

IV. REDUCING TRAINING TIME BY SELECTING A SUBSET OF 
FEATURES 

A weak classifier (WC) is a function of the form h(x, f, s, θ) 
where x is the tested sub image, f is the feature used, s is the 
sign (+ or -) and θ is the threshold. The sign s defines on what 
side of the threshold the positive examples are located. 
Threshold θ is used to establish whether a given image passes a 
classifier test in the following fashion: when feature f is applied 
to image x, the resulting number is compared to threshold θ to 
determine how this image can is categorized by the given 
feature. The equation is given as sf(x) < sθ. If the equation 
evaluates true, the image is classified as positive. The function 
h(x, t, s, θ) is then defined as follows: h(x, f, s, θ)=1 if sf(x)<sθ 
and -1 otherwise. This is expected to correspond to positive and 
negative examples respectively. 

Our main contribution in this article is a novel method for 
reducing training time, by selecting a subset of original 
features, and eliminating others from further training.  We 
propose to pre-eliminate features whose cumulative error of 
corresponding best WCs exceeds a predetermined threshold 
value. We will discuss this method in detail for two different 
(both straightforward) definitions of cumulative error.  

In the initial training of the WCs, each WC is evaluated 
based on its cumulative error of classification (ce). We first 
tested the cumulative error of a classifier defined as ce= 
(false_positives + missed_examples)/q, where q is the total 
number of examples. We proposed to pre-eliminate features 
whose corresponding best threshold value θ is near the trivial 
position at the maximum or minimum of feature values. This is 
a novel method that has reduced the set of available weak 
classifiers to less than 3% of its original size (for the case we 
studied), greatly speeding up training time, and showing no 
negative impact on the quality of the final classifier.  

Weak classifiers that had a ce that was greater than a pre-
determined threshold were automatically (in our program) 
eliminated from further consideration. In our implementation, 
no WC could have a worse cumulative error than min(n,p)/q. 
This is due to the fact that the threshold ! is initially inserted 
before the beginning or after the end of the sorted list of 
training records in each weak classifier. This means that it 
initially classifies all records to be either all negative, or all 
positive, respectively. If there is no better place for ! within 
the list of training records, it remains where it was first placed, 

with the ce that it was originally awarded. The pre-determined 
threshold mentioned above was set as min(n,p)/q-0.01* 
min(n,p)/q. This means a minimum of 1% improvement over 
the trivial initial error was needed for a WC to be accepted into 
the next round of selection. Luckily, the distribution of the 
WC’s is heavily biased passed the min(n,p)/q boundary. This 
means that most weak classifiers are very poor, and have the 
maximum ce (which is equal to min(n,p)/q) which means that 
they were eliminated early from the training procedure. This 
distribution of weak classifier efficiency is illustrated by the 
training results of the best strong classifier generated by our 
program. We deal with roughly 530,000 weak classifiers. For 
example, let us assume that there are 150 positive and 750 
negative examples in a training set. Therefore, the greatest 
cumulative error any one of the weak classifiers could be 
assigned is approximately 16.67%. We adjust our threshold to 
accept all weak classifiers that have a cumulative error equal or 
better than 16.67-0.01*16.67=16.5%. According to our 
experiments, it turns out that there are only ≈15000 weak 
classifiers that satisfy this requirement out of a total of 
≈530,000. That means that over 97% of all initial weak 
classifiers are eliminated from further training. This drastically 
reduces training time while having little impact on the quality 
of the pool of available weak classifiers to choose from. The 
final results of the strong classifier do not suffer from this 
reduction of unnecessary weak classifiers as is evident from 
their high detection rates and low false positive rates.  

An alternative definition that we tested is nce= 
(false_positives/n + missed_examples/p)/2, where n and p 
denote the numbers of negative and positive examples, and 
q=n+p. We refer to this as the normalized cumulative error 
(nce).  This new error function tries to more equally treat both 
types of training examples. It is theoretically better to have 
such a normalized error function when there is a large 
discrepancy in the sizes of the positive and negative training 
sets. In our case, the set of positives numbered 154 examples, 
and the set of negatives contained 760 examples. Since the 
cumulative error function was altered when considering nce, 
the triviality threshold also had to be adjusted. The new 
triviality threshold was determined to be 2*min(n,p)/q - 
0.01*min(n,p))/q. This threshold leaves roughly the same 
number of weak classifiers after the first round of training. It 
reduces training time in the same way as the original triviality 
threshold, and produces similar quality of final classifier. 
Significant changes in n or p may require adjustments to the 
threshold. 

V. ADABOOST BASED LEARNING ALGORITHM USED FOR 
TRAINING 

We describe a novel variant of the AdaBoost based learning 
algorithm, which builds a strong classifier by incremental 
addition of weak classifiers (WCs) that minimize the combined 
error of the already selected WCs. Each WC is trained only 
once, and examples do not change their weights. While all the 
individual components of this approach exist in literature, it 
was not yet used as a combined whole algorithm the way we 
propose here. 

Our variant of the AdaBoost learning algorithm is similar in 
flavour to the alternative voting AdaBoost variant described by 
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Wu, Rehg and Mullin in [WRM]. Both algorithms train WCs 
only once, at the beginning. There are several important 
differences in the two methods. In [WRM], each feature is 
trained so that it has minimal false positive rate. In our variant, 
each feature is trained to minimize a single combined error, 
which includes both false positives and missed positives. In 
[WRM], a new feature is added to either minimize the false 
positive or maximize the detection rates, depending on the 
current detection rate. In our variant, a new feature is always 
one that minimizes the combined error of the classifier. Next, 
the decision of a classifier in [WRM] is made by majority 
voting (where each WC has equal weight). In our approach, the 
weights of each WC are decided at the beginning of the 
training process, and the decision of each classifier is made by 
weighted voting. Next, [WRM] considered different weights 
for positive and negative examples. We considered equal 
weights 1/q for the case where ce= (false_positives + 
missed_examples)/q, and weights 1/n and 1/p for the case 
where nce= false_positives/n + missed_examples/p. Finally, 
our variant is a single strong classifier while [WRM] described 
a cascaded design. 

A strong classifier is obtained by running the Adaboost 
machine. It is a linear combination of weak classifiers. A weak 
classifier is constructed from a feature and a threshold. We 
assume that there are T weak classifiers in a strong classifier, 
labelled h1, h2, …, hT, and each of these comes with its own 
weight labelled  α1, α2, … , αT. The tested image x is passed 
through the succession of weak classifiers h1(x), h2(x), …, hT(x), 
and each weak classifier assesses if the image passed its test. 
The recommendations are either -1 or 1, multiplied by their 
corresponding weight. Note that hi(x)=hi(x, fi, si,θi) is 
abbreviated here for convenience. The decision that classifies 
an image as being positive or negative is made by the following 
test: α1h1(x)+α2h2(x)+ …+αT hT(x)>0. 

A. Training optimal weak classifiers 
In the original approach [FS, VJ], examples are weighted, 

and weights change in the process. Weak classifiers are re-
trained after selecting any of them for the strong classifier. In 
our algorithm, all weak classifiers are trained only once, at the 
beginning of the training process. They do not change in the 
process afterwards, therefore the needed values can be 
memorized. The input consists of feature f and all positive and 
negative examples. The algorithm scans through the sorted list 
of feature values, looking for threshold θ and direction s that 
minimizes the classification error, which is the total number of 
misclassified examples. The output is specified below.  

Algorithm: Training optimal weak classifiers 
Input: Feature f, n negative examples, p positive 

examples,  
Output: Threshold !, sign s, false_pos, missed, weight α.  

Calculate records (f(xi), yi), where yi=1 for a positive 
example, and =-1 for a negative example (using integral images 
where appropriate). Sort these records by the f(xi) field by any 
sorting algorithm, e.g. mergesort, in increasing order. Let the 
obtained array of the f(xi) field be:  g1, g2, …, gq. The 
corresponding records are (gj, status(j))= (f(xi), yi), where 
gj=f(xi).  That is, if the j-th element gj is equal to i-th element 
from the original array f(xi) then status(j)=yi.  

 
s=1; sp=0; sn=0; (*number of positives/negatives below a 

considered threshold *) 
If n < p  then {misclassified=n; θ = gq+1} (*all declared 

positive*) 
else {misclassified= p; θ = g1-1 }; (*all declared negative *) 

For j=1 to q-1 do { 
 If status(j)=+1 then sp= sp + 1 else sn = sn + 1; 
 If sp + n - sn < misclassified  
then { misclassified = sp + n - sn; s=-1; θ =(gj+gj+1)/2 
false_pos=n-sn; missed=sp }; 
 If sn + p - sp < misclassified  
then { misclassified = sn + p - sp; s=1; θ =(gj+gj+1)/2; 

false_pos=sn; missed=p-sp  
}   

}; 
 

The output is a weak classifier h(x)=hi(x, f, s,θ). The 
detection rates and false positive rates of weak classifiers can 
also be considered output at this stage, as (p- missed)/p and 
false_pos/n, respectively. Variables missed and false_pos 
denote the number of misclassified positive and negative 
examples, respectively. 

The relative error of the constructed WC is 
e=misclassified/q=(false_pos+missed)/(p+n), and is used to 
decide the weight of the constructed WC as follows:  

β = e/(1-e), and  α = - log (β).   The assigned weight is α. 

End of Algorithm. 

 
Adaboost therefore assigns large weights with each good 

weak classifier and small weights with each poor weak 
classifier. Note that the algorithm corresponds to the variant 
with combined error ce= (false_positives + 
missed_examples)/q. If the alternate formula nce= 
(false_positives/n + missed_examples/p)/2 is used, some minor 
changes to the algorithm are needed to reflect the weights of 
the positive and negative misclassifications being different 
(proportional to 1/p and 1/n, respectively). 

Optionally, the value of α could be limited. In the best 
performing variant of the protocol for the case we studied, if 
α>1 then α=1 is executed. This was directly applied only to 
the choice of the first WC in our scenario, but (indirectly) 
impacted the selection of the others, including their number 
and overall performance. 

B. Training the best classifier 
First, all weak classifiers (WCs) are trained, as described, 

and the training process returns classification errors missed and 
false_pos. It also returns the weight α for each WC h(x). The 
combined error can be defined in one of several ways, such as 
ce=(missed + false_pos)/q, ce= missed/p + false_pos/n, ce= λ 
missed/p + (1-λ) false_pos/n, where λ is a weighting 
parameter. In our implementation, we use the trivial 
ce=(missed + false_pos)/q. For each feature, find the optimal 
weak classifier as described above. Then the construction of a 
classifier proceeds as follows. 
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Algorithm: Training the best classifier 
Input: set of weak classifiers hi(x), weights αi, n negative 
examples, p positive examples 
Output: series of selected weak classifiers h1, h2 … hT, and 
their weights α1, α2 … αT.  
 
Select the first WC h1(x) (and its weight α1) as the one that has 
minimal combined error ce; 
Set T=1; (* the number of WCs in the classifier *) 
Repeat 

For each WC h(x) calculate the combined error of the 
classifier ( ) ( ) ( ) )(2211 xhxhxhxh TT αααα ++++ !  
and select h(x) that minimizes the error; find its weight α; 

T=T+1, αT=α, hT(x)=h(x); 
Until (detection rate (p- missed)/p≥ d and false positive rate 

false_pos/n≤ fp) or T≥Tmax. 
End of Algorithm. 

 
Note that values ( ) ( ) ( )xhxhxh TTααα +++ !2211  

can be memorized so that testing candidates is faster. In the 
test, false_pos and missed are the numbers of incorrectly 
classified negative and positive examples, respectively, by the 
tested classifier. This section of code is executed for every 
feature, and for every example in the training sets, up to Tmax 
times. The method takes O(Fq log q) time to train all of the 
classifiers in the initial stage, where F is the number of WCs, 
and q is the number of examples. We are left with f WCs, 
where f<<F, after the elimination of poor weak classifiers that 
do not improve the cumulative error more than 1% from the 
trivial position. Testing each new weak classifier while 
assuming that the summary votes of all classifiers are 
previously stored would take O(q) time. It would then take 
O(fq) time to select the best weak classifier. Therefore it takes 
O(Tqf) time to chose T weak classifiers. We deduce that it 
would take O(Fq log q) + O(Tqf) time to complete the training 
using our method (the same time complexity applies to the 
variant described by [WRM]). Since f<<F, the dominant term 
in the time complexity is O(Fq log q). Had F and f been 
roughly equal, the dominant term would have been O(Tqf). 

VI. EXPERIMENTAL RESULTS 
We demonstrated the significant impact of negative 

examples on the training process. We employ a semi-testing set 
of examples. After providing some initial negative examples, 
false positives from the semi-testing set are added to the 
negative example pool. This method is known as bootstrapping 
in some papers. It was introduced in [SP]. We have shown that 
this method has its limits, since the continued application of it 
(over fitting) starts to ‘attack’ the best weak classifiers and 
consequently starts to reduce the accuracy of the classifier. 

The described AdaBoost learning machine, without limiting 
α, had a perfect performance on our training set (described 
below): 100% detection rate and zero false positives. However, 
it had 88% detection rate and 38 false positives on the testing 
set. We then made a minor change in the AdaBoost machine. If 
the weight α of a selected WC was α>1 then we reduced it to 
α=1. This was effectively applied only on the first classifier (in 

our experiments) but had an impact on selecting the others 
(including a small increase in the number of WCs needed to 
reach satisfactory results on the training set). However, the 
results on the testing set were improved in both detection rate 
and false positives, as follows.  

We designed a strong classifier with a record low number 
of weak classifiers (30). Compared to existing literature, we 
have achieved the overall design of a real time object detection 
machine with the least number of examples, the least number 
of weak classifiers, and with competitive detection and false 
positive rates. 

We have built a fast and reliable object recognizer based on 
small training set, consisting of 155 positive and 760 negative 
images. It detects back views of Honda Accords with a 98.7% 
detection rate and 0.4% false positive rate on the training set. 
Since there exist no standardized test sets for the detection of 
any cars, let alone one specific car, our machine was tested on 
a set that was created the same way the training set was 
created. Pictures were taken of cars around town. Our test set 
boasts 106 images that contain 101 positive examples of the 
Honda accord 2004. The positives in the set are in various 
scales and positions within the images. They are also taken 
from a variety of angles that are detectable by our program. 
The test set images themselves also come in a variety of sizes. 
The smallest images are basically the same size as those used 
by Viola and Jones (320 x 240 pixels). The largest image size 
in the test set is 640 x 480 pixels. Our object recognizer 
performed with 89.1% detection rate and 26 false detections on 
a test set containing 106 images of different sizes. These 
numbers are very good when compared to other systems such 
as those put forward by Viola and Jones [VJ] and Levi & 
Weiss [LW]. Viola and Jones’s face detection system was 
tested on a set that contained 130 images with 507 positives. 
Keep in mind that gathering such a test set is much easier when 
positives are faces. Our test has a similar number of images, yet 
a much smaller number of positives. Nevertheless, it is a 
sufficient comparison base to use as a basis for discussion. 
Viola and Jones gave statistics for the number of false positives 
his system produced at various detection rates. At a detection 
rate of roughly 89% (such as our system), his system produced 
roughly 35 false positives. He however used a much greater 
number of classifiers to achieve this result. Levi and Weiss 
used the same test set as Viola and Jones to evaluate their 
system and they achieve an 89% detection rate at the cost of 
roughly 45 false positives. They used a 2500 item training 
database to achieve these results.  

The results of the normalized error function (nce) are 
somewhat ambiguous. The detection rate of the obtained 
machine is 92.1%, yet the false positive count is 117! The false 
positive rate is roughly 4 times higher when using the 
normalized error function. It is interesting to note that the 
detection rate during the training phase is 100%, with a 0.008% 
false positive rate. This form of training was the only one 
capable of completely correctly identifying the entire positive 
set during the training phase. These results carried over to the 
testing phase as is evident by the relatively high detection rate.  

The speed at which images are processed is measured. 
Images as small as 150 x 120 pixels are processed in 0.05 
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seconds. Images of size 170 x 227 pixels are processed in 0.18 
seconds. Standard size images similar to those used in Viola 
and Jones [VJ] and other papers of size 320 x 240 are 
processed in 0.49 seconds. We consider this to be real time. It 
takes more and more time to process larger pictures. For 
example, it takes 1.93 seconds to process a picture of size 500 
x 253. The size of the picture directly impacts the time it takes 
to process it. This is logical since larger images contain more 
sub windows that must be searched. In fact, the running time is 
proportional to the number of features contained in a window 
of a given size. In our implementation, widths and heights of 
sub windows grow by 10%. The time complexity is therefore 
O(AT log(b/c)), where b is the image width, c is the minimal 
example width, T is the number of WCs in the strong classifier 
and A is the area of the searched window, since there are O(A) 
features of a given size, and O(log(b/c)) incremental steps. 
When T is fixed, the complexity may also be expressed as O(b2 
log(b)), where b2"A. We see that the complexity grows faster 
than quadratic time with respect to image width.  

VII. CONCLUSIONS 
The training program can be considered as being composed 

of three components: an AdaBoost classifier, a Feature set, and 
a Training set. The AdaBoost software framework appears to 
be widely adopted for real time object detection. For example, 
Le and Satoh [LS] recently claimed that cascaded AdaBoost is 
about 1000 times faster than a support vector machine 
approach. The feature sets are not as general. Viola and Jones’ 
set of features [VJ] was successfully used for recognizing 
similar types of objects such as lion faces [BC]. However, we 
show in [S] that the feature set for recognizing faces is 
completely different (practically disjoint) from the feature set 
for finding cars. The same set of features could be used to 
recognize different objects, by simply replacing one training set 
with the other. For instance, we believe that one could equally 
well recognize the back of another car such as the Toyota 
Camry 2004 by collecting the corresponding pictures for the 
training set and using the version of AdaBoost described here.  

We have proposed a general elimination step in the 
program, by introducing a threshold for the quality of a feature, 
to reduce training time. It is an open area to further elaborate 
on the applicability of common feature sets, fully or partially, 
in recognition of some objects. One can always merge two sets 
into one, threshold them for triviality on a given training set, 
and then claim that the same feature set is applicable to 
recognition of two totally distinct objects. For instance, one can 
add the set of dominant edge orientations to Viola and Jones’ 
set for face detectors, and use them to train either faces or cars. 
When recognizing faces from appropriate training sets, redness 
features are eliminated, while many dominant edge orientation 
features may remain. When the same set is applied to recognize 
Honda’s, all of Viola and Jones’ features are basically removed 
first before real training, with the idea that we proposed (to the 
best of our knowledge, our system is the first real time 
AdaBoost based system that recognizes an object without Viola 
and Jones’ features). But one cannot claim that this process can 
be continued to eventually include any type of objects, given 
the desired performance metrics. A new type of object may 
always exist that has its specific feature that works ideally for 

it, and needs to be added. An example is a circular object 
where a hypothetical roundness measure may be used to help 
identify it. For instance, Blaschko et al [BHM] considered a 
variety of features separated into five groups: simple shape, 
moments, contour representations, along with both differential 
and texture features, for automatic in situ identification of 
plankton. We believe that one can further develop the idea 
presented here of introducing an automatic feature triviality test 
and link it to this discussion. Simply speaking, features from a 
large set are put through this test, and only some of them pass. 
Given two objects to recognize, one can define a measure of 
their similarity by looking at the number of common and 
different remaining features.  
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