
1-4244-0023-6/06 CIS ©2006 IEEE CIS 2006

Pre-Eliminating Features for Fast Training in Real
Time Object Detection in Images with a Novel

Variant of AdaBoost

Milos Stojmenovi!
SITE, University of Ottawa,

Ottawa, Ontario, Canada K1N 6N5
mstoj075@site.uottawa.ca

Abstract— Our primary interest is to build fast and
reliable object recognizers in images based on small training sets.
This is important in cases where the training set needs to be built
mostly manually, as in the case that we studied, the recognition of
the Honda Accord 2004 from rear views. We described a novel
variant of the AdaBoost based learning algorithm, which builds a
strong classifier by incremental addition of weak classifiers
(WCs) that minimize the combined error of the already selected
WCs. Each WC is trained only once, and examples do not change
their weights. We proposed to pre-eliminate features whose
cumulative error of corresponding best WCs exceeds a
predetermined threshold value. We tested two straightforward
definitions of cumulative error. In both cases, we showed that,
when over 97% of the initial features are eliminated at the very
beginning from further training, training time is drastically
reduced while having little impact on the quality of the pool of
available WCs. This is a novel method that has reduced the
training set WC quantity to less than 3% of its original number,
greatly speeding up training time, and showing no negative
impact on the quality of the final classifier. Our experiments
indicated that the set of features used by Viola and Jones and
others for face recognition was inefficient for our problem;
therefore, each object requires its own custom-made set of
features for real time and accurate recognition. Our training
method, combined with the selection of appropriate features, has
resulted in finding a very accurate classifier containing merely 30
weak classifiers. Compared to existing literature, we have overall
achieved the design of a real time object detection machine with
the least number of examples, the least number of weak
classifiers, the fastest training time, and with competitive
detection and false positive rates.

Keywords: AdaBoost, real time, object detection.

I. INTRODUCTION
The goal of this article is to analyze the capability of

current machine learning techniques of detecting objects in
images different from faces. By ‘capability’ we mean real time
performance, a high detection rate, low false positive rate, and
learning with a small training set. We are particularly interested
in cases where the training set is not easily available, and most
of it needs to be created manually. We have applied machine
learning to the detection of rears of cars in images. Specifically,
the system should be able to recognize cars of a certain type
such as a Honda Accord, 2004. Therefore, input should be an

arbitrary image, and the result should be that same image with
a rectangle around any occurrence of the car we are searching
for. In addition to precision of detection, the second major goal
is real time performance. The program should quickly find all
the cars of the given type and position in an image, in the same
way that Viola and Jones [VJ] find all the heads. The definition
of ‘real time’ depends on the application, but generally
speaking we would like to receive an answer for testing an
image within a second or so. The response time depends on the
size of the tested image, thus what appears to be real time for
smaller images may not be so for larger ones.

Finally, our goal is to also design the object detection
system based on a small number of training examples. We
envision applications in cases where training examples are not
easily available. For instance, in the case that we studied, we
had to take photos of back views of a few hundred Honda
Accords and other cars to create training sets, since virtually no
positive images were found on the Internet. In such cases, it is
difficult to expect that one can have tens of thousands of
images readily available, which was the case for the face
detection problem. The additional benefit of a small training set
is that the training time is reduced. This enabled us to perform
a number of training attempts, adjust the set of examples,
adjust the set of features, test various sets of weak classifiers,
and otherwise analyze the process by observing the behaviour
of the generated classifiers.

We will apply machine learning methods in an attempt to
solve the problem of detecting rears of a particular car type
since they appear to be appropriate given the setting of the
problem. Machine learning in similar image retrieval has
proven to be reliable in situations where the target object does
not change orientation. A classic application has become the
detection of upright forward facing heads as proposed by Viola
and Jones [VJ]. Cars are typically found in the same orientation
with respect to the road. They can be photographed from
various angles (front, side …) but they are rarely found up-
side-down. The situation we are interested in is the rear view of
cars. This situation is typically used in monitoring traffic since
license plates are universally found at the rears of vehicles. It is
also the target of choice of police traffic monitoring equipment,
since their cameras are usually positioned to film the license
plates for the purposes of vehicle recognition. Therefore,

329

hardware is already in place for various software applications
in vehicle detection.

The positive images were taken such that all of the Hondas
have the same general orthogonal orientation with respect to
the camera. Some deviation occurred in the pitch, yaw and roll
of these images, which might be why the resulting detector has
such a wide range of effectiveness. The machine that was built
is effective for the following deviations in angles: pitch -150,
yaw -300 to 300, and roll -150 to 150. This means that pictures
of Hondas taken from angles that are off by the stated amounts
are still detected by the program.

Section 2 presents the related work. The features used in
our car detection system were described in section 3 (details
are given in a companion article [S]). Our main contribution,
pre-elimination of features, is elaborated on in section 4.
Section 5 describes the AdaBoost based learning algorithm
used for our object detection problem. Experimental results are
given in section 6. Conclusions and references complete this
article.

II. LITERATURE REVIEW
We are not aware of any existing solution that recognizes

back view of any particular type of cars. We therefore reviewed
solutions to more general problems. Existing vehicle detection
systems, such as those that try to drive cars automatically along
a highway do not actually detect cars on the road. They simply
assume that anything that is moving on the highway is a
vehicle. In scientific literature, some car recognition solutions
also exist that are based on shape detectors [TC]. An existing
shape matching based approach [TC] is reported to have a
60%-85% detection rate, which is below our stated goals. The
approach based on nearest neighbour matching [PC] is too
sensitive to viewpoint change, while the approach based on
PCA (Principal Component Analysis) [PC] is not a real time
system.

The most popular example of object detection is the
detection of faces. The fundamental application that gave
credibility to Adaboost (proposed originally in [FS]) was Viola
and Jones’ real time face finding system [VJ]. Adaboost is the
concrete machine learning method that was used by Viola and
Jones to implement their system. In this approach, positive and
negative training sets are separated by a cascade of classifiers,
each constructed by Adaboost. Real time performance is
achieved by selecting features that can be computed in constant
time (after a pre-processing step). The training time of the face
detector appears to be slow, even taking months according to
some reports. One of the key contributions in [VJ] was the
introduction of a new image representation called the “Integral
Image”, which allows the features used by their detector to be
computed very quickly.

 Viola and Jones’ face finding system has been modified in
literature in a number of articles. The modifications include
addition of new features. Of particular interest to us were
features based on gradient histograms [LW], and those based
on the color of certain parts of an image [LYT]. The Adaboost
machine itself was modified in literature in several ways. We
have considered all of the modifications proposed in literature,

and adopted ideas that were considered helpful for achieving
our goals.

 We again stress that most of the successful applications of
AdaBoost used a large training set. In Viola and Jones’ original
face detector [VJ], 10,000 images were used in the training set.
The smallest known training database for face detection was by
Levi and Weiss [LW]. They started to achieve detection rates
in the 90% category when the number of positive examples
reached 250. The number of negative examples was not
specified at this level, but the authors say that they randomly
downloaded 10,000 images from the Internet containing over
100,000,000 sub windows. They only moderately increased
their detection rates as the size of the positive set grew
drastically.

We apply a similar general design as in [VJ]. The object
search is based on a machine that takes in a square region of
size equal to or greater than 24x24 pixels (for the face search)
[VJ] (we had a limit of 100x150 for the car search) as input and
declares whether or not this region contains the searched
object. We use such a machine to analyze the entire image. We
pass every sub window of every scale through this machine to
find all sub windows that contain faces. A sliding window
technique is therefore used. The window in [VJ] is shifted 1
pixel after every analysis of a sub window (we used a 2 pixels
shift to speed things up, without notable negative impact). Both
dimensions of the sub window grow in both length and width
10% every time all of the sub windows of the previous size
were exhaustively searched.

III. FEATURES USED IN RECOGNITION
We described a set of appropriate feature types for the

considered recognition problem, including a redness measure
and dominant edge orientations, in companion article [S],
where details and formal definitions are given. The existing
edge orientation bin division was improved by shifting, so that
all horizontal (vertical, respectively) edges belong to the same
bin.

A feature is a function that maps an image into a real
number. Our experiments indicated that the set of features used
by Viola and Jones [VJ] was inefficient for our problem. Viola
and Jones’ Haar wavelets were eliminated from the training
procedure completely early in the implementation and testing
phase since they failed to produce any usable results. Not only
were their cumulative errors in the training process too great to
be useful, but their very presence in the feature set greatly, yet
fruitlessly, increased training time. Therefore, each problem
requires its own custom-made set of features. Two types of
basic features were used. They were redness features (see also
[LYT], and dominant edge orientation features (see also [LW]).
Figures 1 and 2 show the best and second best weak classifiers
as chosen by our training algorithm.

Figure 1. WC1 Figure 2. WC2

330

The best weak classifier as determined by the system was
an edge detector applied to the upper-left hand corner of the
Honda. The small green box in Figure 4 defines this weak
classifier. It detects the 45 degree edge that is dominant in this
region. The second best weak classifier was a redness feature
that detected the rear stop lights of the Honda (Figure 2). The
selection of this feature validated our assumption that a redness
feature used for detecting the rear stop lights would be very
important. The other weak classifiers that were chosen identify
many areas of horizontal edges that are common, redness
features that define each stop light separately, and areas that do
not have a specific orientation of edge. An example of such an
occurrence is the area just below the license plates. This area is
mostly void of any vertical edges.

IV. REDUCING TRAINING TIME BY SELECTING A SUBSET OF
FEATURES

A weak classifier (WC) is a function of the form h(x, f, s, θ)
where x is the tested sub image, f is the feature used, s is the
sign (+ or -) and θ is the threshold. The sign s defines on what
side of the threshold the positive examples are located.
Threshold θ is used to establish whether a given image passes a
classifier test in the following fashion: when feature f is applied
to image x, the resulting number is compared to threshold θ to
determine how this image can is categorized by the given
feature. The equation is given as sf(x) < sθ. If the equation
evaluates true, the image is classified as positive. The function
h(x, t, s, θ) is then defined as follows: h(x, f, s, θ)=1 if sf(x)<sθ
and -1 otherwise. This is expected to correspond to positive and
negative examples respectively.

Our main contribution in this article is a novel method for
reducing training time, by selecting a subset of original
features, and eliminating others from further training. We
propose to pre-eliminate features whose cumulative error of
corresponding best WCs exceeds a predetermined threshold
value. We will discuss this method in detail for two different
(both straightforward) definitions of cumulative error.

In the initial training of the WCs, each WC is evaluated
based on its cumulative error of classification (ce). We first
tested the cumulative error of a classifier defined as ce=
(false_positives + missed_examples)/q, where q is the total
number of examples. We proposed to pre-eliminate features
whose corresponding best threshold value θ is near the trivial
position at the maximum or minimum of feature values. This is
a novel method that has reduced the set of available weak
classifiers to less than 3% of its original size (for the case we
studied), greatly speeding up training time, and showing no
negative impact on the quality of the final classifier.

Weak classifiers that had a ce that was greater than a pre-
determined threshold were automatically (in our program)
eliminated from further consideration. In our implementation,
no WC could have a worse cumulative error than min(n,p)/q.
This is due to the fact that the threshold ! is initially inserted
before the beginning or after the end of the sorted list of
training records in each weak classifier. This means that it
initially classifies all records to be either all negative, or all
positive, respectively. If there is no better place for ! within
the list of training records, it remains where it was first placed,

with the ce that it was originally awarded. The pre-determined
threshold mentioned above was set as min(n,p)/q-0.01*
min(n,p)/q. This means a minimum of 1% improvement over
the trivial initial error was needed for a WC to be accepted into
the next round of selection. Luckily, the distribution of the
WC’s is heavily biased passed the min(n,p)/q boundary. This
means that most weak classifiers are very poor, and have the
maximum ce (which is equal to min(n,p)/q) which means that
they were eliminated early from the training procedure. This
distribution of weak classifier efficiency is illustrated by the
training results of the best strong classifier generated by our
program. We deal with roughly 530,000 weak classifiers. For
example, let us assume that there are 150 positive and 750
negative examples in a training set. Therefore, the greatest
cumulative error any one of the weak classifiers could be
assigned is approximately 16.67%. We adjust our threshold to
accept all weak classifiers that have a cumulative error equal or
better than 16.67-0.01*16.67=16.5%. According to our
experiments, it turns out that there are only ≈15000 weak
classifiers that satisfy this requirement out of a total of
≈530,000. That means that over 97% of all initial weak
classifiers are eliminated from further training. This drastically
reduces training time while having little impact on the quality
of the pool of available weak classifiers to choose from. The
final results of the strong classifier do not suffer from this
reduction of unnecessary weak classifiers as is evident from
their high detection rates and low false positive rates.

An alternative definition that we tested is nce=
(false_positives/n + missed_examples/p)/2, where n and p
denote the numbers of negative and positive examples, and
q=n+p. We refer to this as the normalized cumulative error
(nce). This new error function tries to more equally treat both
types of training examples. It is theoretically better to have
such a normalized error function when there is a large
discrepancy in the sizes of the positive and negative training
sets. In our case, the set of positives numbered 154 examples,
and the set of negatives contained 760 examples. Since the
cumulative error function was altered when considering nce,
the triviality threshold also had to be adjusted. The new
triviality threshold was determined to be 2*min(n,p)/q -
0.01*min(n,p))/q. This threshold leaves roughly the same
number of weak classifiers after the first round of training. It
reduces training time in the same way as the original triviality
threshold, and produces similar quality of final classifier.
Significant changes in n or p may require adjustments to the
threshold.

V. ADABOOST BASED LEARNING ALGORITHM USED FOR
TRAINING

We describe a novel variant of the AdaBoost based learning
algorithm, which builds a strong classifier by incremental
addition of weak classifiers (WCs) that minimize the combined
error of the already selected WCs. Each WC is trained only
once, and examples do not change their weights. While all the
individual components of this approach exist in literature, it
was not yet used as a combined whole algorithm the way we
propose here.

Our variant of the AdaBoost learning algorithm is similar in
flavour to the alternative voting AdaBoost variant described by

331

Wu, Rehg and Mullin in [WRM]. Both algorithms train WCs
only once, at the beginning. There are several important
differences in the two methods. In [WRM], each feature is
trained so that it has minimal false positive rate. In our variant,
each feature is trained to minimize a single combined error,
which includes both false positives and missed positives. In
[WRM], a new feature is added to either minimize the false
positive or maximize the detection rates, depending on the
current detection rate. In our variant, a new feature is always
one that minimizes the combined error of the classifier. Next,
the decision of a classifier in [WRM] is made by majority
voting (where each WC has equal weight). In our approach, the
weights of each WC are decided at the beginning of the
training process, and the decision of each classifier is made by
weighted voting. Next, [WRM] considered different weights
for positive and negative examples. We considered equal
weights 1/q for the case where ce= (false_positives +
missed_examples)/q, and weights 1/n and 1/p for the case
where nce= false_positives/n + missed_examples/p. Finally,
our variant is a single strong classifier while [WRM] described
a cascaded design.

A strong classifier is obtained by running the Adaboost
machine. It is a linear combination of weak classifiers. A weak
classifier is constructed from a feature and a threshold. We
assume that there are T weak classifiers in a strong classifier,
labelled h1, h2, …, hT, and each of these comes with its own
weight labelled α1, α2, … , αT. The tested image x is passed
through the succession of weak classifiers h1(x), h2(x), …, hT(x),
and each weak classifier assesses if the image passed its test.
The recommendations are either -1 or 1, multiplied by their
corresponding weight. Note that hi(x)=hi(x, fi, si,θi) is
abbreviated here for convenience. The decision that classifies
an image as being positive or negative is made by the following
test: α1h1(x)+α2h2(x)+ …+αT hT(x)>0.

A. Training optimal weak classifiers
In the original approach [FS, VJ], examples are weighted,

and weights change in the process. Weak classifiers are re-
trained after selecting any of them for the strong classifier. In
our algorithm, all weak classifiers are trained only once, at the
beginning of the training process. They do not change in the
process afterwards, therefore the needed values can be
memorized. The input consists of feature f and all positive and
negative examples. The algorithm scans through the sorted list
of feature values, looking for threshold θ and direction s that
minimizes the classification error, which is the total number of
misclassified examples. The output is specified below.

Algorithm: Training optimal weak classifiers
Input: Feature f, n negative examples, p positive

examples,
Output: Threshold !, sign s, false_pos, missed, weight α.

Calculate records (f(xi), yi), where yi=1 for a positive
example, and =-1 for a negative example (using integral images
where appropriate). Sort these records by the f(xi) field by any
sorting algorithm, e.g. mergesort, in increasing order. Let the
obtained array of the f(xi) field be: g1, g2, …, gq. The
corresponding records are (gj, status(j))= (f(xi), yi), where
gj=f(xi). That is, if the j-th element gj is equal to i-th element
from the original array f(xi) then status(j)=yi.

s=1; sp=0; sn=0; (*number of positives/negatives below a

considered threshold *)
If n < p then {misclassified=n; θ = gq+1} (*all declared

positive*)
else {misclassified= p; θ = g1-1 }; (*all declared negative *)

For j=1 to q-1 do {
 If status(j)=+1 then sp= sp + 1 else sn = sn + 1;
 If sp + n - sn < misclassified
then { misclassified = sp + n - sn; s=-1; θ =(gj+gj+1)/2
false_pos=n-sn; missed=sp };
 If sn + p - sp < misclassified
then { misclassified = sn + p - sp; s=1; θ =(gj+gj+1)/2;

false_pos=sn; missed=p-sp
}

};

The output is a weak classifier h(x)=hi(x, f, s,θ). The
detection rates and false positive rates of weak classifiers can
also be considered output at this stage, as (p- missed)/p and
false_pos/n, respectively. Variables missed and false_pos
denote the number of misclassified positive and negative
examples, respectively.

The relative error of the constructed WC is
e=misclassified/q=(false_pos+missed)/(p+n), and is used to
decide the weight of the constructed WC as follows:

β = e/(1-e), and α = - log (β). The assigned weight is α.

End of Algorithm.

Adaboost therefore assigns large weights with each good

weak classifier and small weights with each poor weak
classifier. Note that the algorithm corresponds to the variant
with combined error ce= (false_positives +
missed_examples)/q. If the alternate formula nce=
(false_positives/n + missed_examples/p)/2 is used, some minor
changes to the algorithm are needed to reflect the weights of
the positive and negative misclassifications being different
(proportional to 1/p and 1/n, respectively).

Optionally, the value of α could be limited. In the best
performing variant of the protocol for the case we studied, if
α>1 then α=1 is executed. This was directly applied only to
the choice of the first WC in our scenario, but (indirectly)
impacted the selection of the others, including their number
and overall performance.

B. Training the best classifier
First, all weak classifiers (WCs) are trained, as described,

and the training process returns classification errors missed and
false_pos. It also returns the weight α for each WC h(x). The
combined error can be defined in one of several ways, such as
ce=(missed + false_pos)/q, ce= missed/p + false_pos/n, ce= λ
missed/p + (1-λ) false_pos/n, where λ is a weighting
parameter. In our implementation, we use the trivial
ce=(missed + false_pos)/q. For each feature, find the optimal
weak classifier as described above. Then the construction of a
classifier proceeds as follows.

332

Algorithm: Training the best classifier
Input: set of weak classifiers hi(x), weights αi, n negative
examples, p positive examples
Output: series of selected weak classifiers h1, h2 … hT, and
their weights α1, α2 … αT.

Select the first WC h1(x) (and its weight α1) as the one that has
minimal combined error ce;
Set T=1; (* the number of WCs in the classifier *)
Repeat

For each WC h(x) calculate the combined error of the
classifier () () ())(2211 xhxhxhxh TT αααα ++++ !
and select h(x) that minimizes the error; find its weight α;

T=T+1, αT=α, hT(x)=h(x);
Until (detection rate (p- missed)/p≥ d and false positive rate

false_pos/n≤ fp) or T≥Tmax.
End of Algorithm.

Note that values () () ()xhxhxh TTααα +++ !2211

can be memorized so that testing candidates is faster. In the
test, false_pos and missed are the numbers of incorrectly
classified negative and positive examples, respectively, by the
tested classifier. This section of code is executed for every
feature, and for every example in the training sets, up to Tmax
times. The method takes O(Fq log q) time to train all of the
classifiers in the initial stage, where F is the number of WCs,
and q is the number of examples. We are left with f WCs,
where f<<F, after the elimination of poor weak classifiers that
do not improve the cumulative error more than 1% from the
trivial position. Testing each new weak classifier while
assuming that the summary votes of all classifiers are
previously stored would take O(q) time. It would then take
O(fq) time to select the best weak classifier. Therefore it takes
O(Tqf) time to chose T weak classifiers. We deduce that it
would take O(Fq log q) + O(Tqf) time to complete the training
using our method (the same time complexity applies to the
variant described by [WRM]). Since f<<F, the dominant term
in the time complexity is O(Fq log q). Had F and f been
roughly equal, the dominant term would have been O(Tqf).

VI. EXPERIMENTAL RESULTS
We demonstrated the significant impact of negative

examples on the training process. We employ a semi-testing set
of examples. After providing some initial negative examples,
false positives from the semi-testing set are added to the
negative example pool. This method is known as bootstrapping
in some papers. It was introduced in [SP]. We have shown that
this method has its limits, since the continued application of it
(over fitting) starts to ‘attack’ the best weak classifiers and
consequently starts to reduce the accuracy of the classifier.

The described AdaBoost learning machine, without limiting
α, had a perfect performance on our training set (described
below): 100% detection rate and zero false positives. However,
it had 88% detection rate and 38 false positives on the testing
set. We then made a minor change in the AdaBoost machine. If
the weight α of a selected WC was α>1 then we reduced it to
α=1. This was effectively applied only on the first classifier (in

our experiments) but had an impact on selecting the others
(including a small increase in the number of WCs needed to
reach satisfactory results on the training set). However, the
results on the testing set were improved in both detection rate
and false positives, as follows.

We designed a strong classifier with a record low number
of weak classifiers (30). Compared to existing literature, we
have achieved the overall design of a real time object detection
machine with the least number of examples, the least number
of weak classifiers, and with competitive detection and false
positive rates.

We have built a fast and reliable object recognizer based on
small training set, consisting of 155 positive and 760 negative
images. It detects back views of Honda Accords with a 98.7%
detection rate and 0.4% false positive rate on the training set.
Since there exist no standardized test sets for the detection of
any cars, let alone one specific car, our machine was tested on
a set that was created the same way the training set was
created. Pictures were taken of cars around town. Our test set
boasts 106 images that contain 101 positive examples of the
Honda accord 2004. The positives in the set are in various
scales and positions within the images. They are also taken
from a variety of angles that are detectable by our program.
The test set images themselves also come in a variety of sizes.
The smallest images are basically the same size as those used
by Viola and Jones (320 x 240 pixels). The largest image size
in the test set is 640 x 480 pixels. Our object recognizer
performed with 89.1% detection rate and 26 false detections on
a test set containing 106 images of different sizes. These
numbers are very good when compared to other systems such
as those put forward by Viola and Jones [VJ] and Levi &
Weiss [LW]. Viola and Jones’s face detection system was
tested on a set that contained 130 images with 507 positives.
Keep in mind that gathering such a test set is much easier when
positives are faces. Our test has a similar number of images, yet
a much smaller number of positives. Nevertheless, it is a
sufficient comparison base to use as a basis for discussion.
Viola and Jones gave statistics for the number of false positives
his system produced at various detection rates. At a detection
rate of roughly 89% (such as our system), his system produced
roughly 35 false positives. He however used a much greater
number of classifiers to achieve this result. Levi and Weiss
used the same test set as Viola and Jones to evaluate their
system and they achieve an 89% detection rate at the cost of
roughly 45 false positives. They used a 2500 item training
database to achieve these results.

The results of the normalized error function (nce) are
somewhat ambiguous. The detection rate of the obtained
machine is 92.1%, yet the false positive count is 117! The false
positive rate is roughly 4 times higher when using the
normalized error function. It is interesting to note that the
detection rate during the training phase is 100%, with a 0.008%
false positive rate. This form of training was the only one
capable of completely correctly identifying the entire positive
set during the training phase. These results carried over to the
testing phase as is evident by the relatively high detection rate.

The speed at which images are processed is measured.
Images as small as 150 x 120 pixels are processed in 0.05

333

seconds. Images of size 170 x 227 pixels are processed in 0.18
seconds. Standard size images similar to those used in Viola
and Jones [VJ] and other papers of size 320 x 240 are
processed in 0.49 seconds. We consider this to be real time. It
takes more and more time to process larger pictures. For
example, it takes 1.93 seconds to process a picture of size 500
x 253. The size of the picture directly impacts the time it takes
to process it. This is logical since larger images contain more
sub windows that must be searched. In fact, the running time is
proportional to the number of features contained in a window
of a given size. In our implementation, widths and heights of
sub windows grow by 10%. The time complexity is therefore
O(AT log(b/c)), where b is the image width, c is the minimal
example width, T is the number of WCs in the strong classifier
and A is the area of the searched window, since there are O(A)
features of a given size, and O(log(b/c)) incremental steps.
When T is fixed, the complexity may also be expressed as O(b2
log(b)), where b2"A. We see that the complexity grows faster
than quadratic time with respect to image width.

VII. CONCLUSIONS
The training program can be considered as being composed

of three components: an AdaBoost classifier, a Feature set, and
a Training set. The AdaBoost software framework appears to
be widely adopted for real time object detection. For example,
Le and Satoh [LS] recently claimed that cascaded AdaBoost is
about 1000 times faster than a support vector machine
approach. The feature sets are not as general. Viola and Jones’
set of features [VJ] was successfully used for recognizing
similar types of objects such as lion faces [BC]. However, we
show in [S] that the feature set for recognizing faces is
completely different (practically disjoint) from the feature set
for finding cars. The same set of features could be used to
recognize different objects, by simply replacing one training set
with the other. For instance, we believe that one could equally
well recognize the back of another car such as the Toyota
Camry 2004 by collecting the corresponding pictures for the
training set and using the version of AdaBoost described here.

We have proposed a general elimination step in the
program, by introducing a threshold for the quality of a feature,
to reduce training time. It is an open area to further elaborate
on the applicability of common feature sets, fully or partially,
in recognition of some objects. One can always merge two sets
into one, threshold them for triviality on a given training set,
and then claim that the same feature set is applicable to
recognition of two totally distinct objects. For instance, one can
add the set of dominant edge orientations to Viola and Jones’
set for face detectors, and use them to train either faces or cars.
When recognizing faces from appropriate training sets, redness
features are eliminated, while many dominant edge orientation
features may remain. When the same set is applied to recognize
Honda’s, all of Viola and Jones’ features are basically removed
first before real training, with the idea that we proposed (to the
best of our knowledge, our system is the first real time
AdaBoost based system that recognizes an object without Viola
and Jones’ features). But one cannot claim that this process can
be continued to eventually include any type of objects, given
the desired performance metrics. A new type of object may
always exist that has its specific feature that works ideally for

it, and needs to be added. An example is a circular object
where a hypothetical roundness measure may be used to help
identify it. For instance, Blaschko et al [BHM] considered a
variety of features separated into five groups: simple shape,
moments, contour representations, along with both differential
and texture features, for automatic in situ identification of
plankton. We believe that one can further develop the idea
presented here of introducing an automatic feature triviality test
and link it to this discussion. Simply speaking, features from a
large set are put through this test, and only some of them pass.
Given two objects to recognize, one can define a measure of
their similarity by looking at the number of common and
different remaining features.

VIII. REFERENCES
[BHM] M. Blaschko, G. Holness, M. Mattar, D. Lisin, P.

Utgoff, A. Hanson, H. Schultz, E. Riseman, M. Sieracki,
W. Balch, and B. Tupper, Automatic In Situ Identification
of Plankton, Proceedings of IEEE Workshop on
Applications of Computer Vision, Breckenridge,
Colorado, Jan. 5-7, 2005.

[FS] Y. Freund, R.E. Schapire, A decision-theoretic
generalization on on-line learning and an application to
boosting, Journal of Computer and System Sciences,
55(1):119–139, August 1997.

[LS] D. Le and S. Satoh, Fusion of Local and Global Features
for Efficient Object Detection, IS & T/SPIE Symposium
on Electronic Imaging, 2005.

[LW] K. Levi, Y. Weiss, Learning Object Detection from a
Small Number of Examples: the Importance of Good
Features, International Conference on Computer Vision
and Pattern Recognition (CVPR), 2004.

[LYT] H. Luo, J. Yen, D. Tretter, An Efficient Automatic
Redeye Detection and Correction Algorithm, 17th IEEE
International Conference on Pattern Recognition,
(ICPR'04) V. 2, Aug. 23 - 26, 2004, Cambridge UK.

[PC] V.S. Petrovic and T.F. Cootes, Analysis of Features for
Rigid Structure Vehicle Type Recognition, Proc. British
Machine Vision Conf. 2004, Vol.2, pp.587-596.

[S] M. Stojmenovic, Real time car detection in images based
on an AdaBoost machine learning approach and a small
training set, Proc. 12th International IEEE Workshop on
Systems, Signals & Image Processing IWSSIP, 119-124
Chalkida, Greece, Sept. 22-24, 2005.

[SP] K. Sung, T. Poggio, Example based learning for view-
based human face detection, IEEE Trans. Pattern Anal.
Mach. Intelligence, 20, 39-51, 1998.

[TC] J. Thureson, S. Carlsson, Finding Object Categories in
Cluttered Images Using Minimal Shape Prototypes, 13th
Scandinavian Conference on Image Analysis SCIA,
Goteborg, Sweden, 2003.

[VJ] P. Viola, M. Jones, Robust real-time face detection, Int.
J. Computer Vision, 57, 2, 137-154, 2004.

[WRM] J. Wu, J. Regh, and M. Mullin, Learning a Rare Event
Detection Cascade by Direct Feature Selection, Proc.
Advances in Neural Information Processing Systems 16
(NIPS*2003), MIT Press, 2004.

334

