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Abstract— It is often useful to measure how linear a 
certain set of points is. Our goal is to design algorithms that give 
a linearity measurement in the interval [0, 1]. There is no explicit 
discussion on linearity in literature, although some existing shape 
measures may be adapted. We are interested in linearity 
measures which are invariant to rotation, scaling, and 
translation. These linearity measures should also be calculated 
very quickly and be resistant to protrusions in the data set. The 
measures of eccentricity and contour smoothness were adapted 
from literature, the other five being triangle heights, triangle 
perimeters, rotation correlation, average orientations, and ellipse 
axis ratio. The algorithms are tested on 30 sample curves and the 
results are compared against the linear classifications of these 
curves by human subjects. It is found that humans and 
computers typically easily identify sets of points that are clearly 
linear, and sets of points that are clearly not linear. They have 
trouble measuring sets of points which are in the gray area in 
between. Although they appear to be conceptually very different 
approaches, we prove, theoretically and experimentally, that 
eccentricity and rotation correlation yield exactly the same 
linearity measurements. They however provide results which are 
furthest from human measurements. The average orientations 
method provides the closest results to human perception, while 
the other algorithms proved themselves to be very competitive.  
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I.  INTRODUCTION 
The main motivation for this work is in image processing. 

Measuring the linearity of a finite set of points can become an 
interesting way of identifying the important components of a 
picture. Linear points are interesting since they often represent 
a region of interest in an image. Most man made structures or 
objects have strong straight lines that are easily identifiable. By 
dissecting an object into an ordered collection of lines, the 
object becomes more easily identifiable; visually and 
computationally. There are a variety of methods to extract 
edges from images. Objects such as cars or tables in such edge 
representations of images are still easily recognizable by 
humans – the whole is more than just the sum of its parts 
(edges in our case). This leads to interesting possibilities for the 
domain of computer vision in the sense that useful information 
can be extracted from images just by examining the edges.  

Here, we are interested in measuring linearity. In analyzing 
various algorithms, we align ourselves with the following 
criteria. We are interested in assigning linearity values to sets 
of points. The linearity value is a number in the range [0, 1]. 
The linearity value of a given shape equals 1 if and only if the 
shape is linear, and the linearity value equals 0 when the shape 
is circular or has another form which is highly non-linear such 

as a spiral. A shape’s linearity value should be invariant under 
similarity transformations of the shape, such as scaling, 
rotation and translation. The algorithms should also be resistant 
to protrusions in the data set. Linearity values should also be 
computed by a simple and fast algorithm.  

In general, we are interested in measuring how linear a 
finite set of points is. It is very important to stress that points in 
the set are not ordered. This means that figures such as ellipses 
or rectangles which are very flat (long and thin) are considered 
to be highly linear. If we were to consider ordered sets of 
points, such ellipses would be highly non linear. Because the 
set of points is not ordered, permutations of the input set should 
not affect the linearity value. 

The closest applications of shape analysis to our article in 
this field are measuring convexity [SHB, ZR2, S, B], 
rectilinearity [ZR1], rectangularity [R2, R3], ellipticity [R3], 
sigmoidality [R1] and circularity [C]. We have not found a 
concrete discussion on measuring linearity. Some sources in 
literature make references to measurements that could be used 
to test linearity, but they use them for other purposes. For 
example, the measures of eccentricity and contour smoothness 
are developed for testing circularity, yet they are also used here 
for testing linearity. Measuring convexity is a popular problem, 
but one that cannot easily be applied here. Rectilinearity was 
discussed in literature and can be applied to such things as 
finding man made settlements in satellite imagery [ZR1]. Some 
rectangularity measures may be modified to measure linearity. 
Rectangles which are long, yet narrow, may represent lines. 
Some algorithms which measure rectangularity are sensitive to 
protrusions in the data set. For example, a smallest enclosing 
box can be used to measure rectangularity [R2]; however, 
small irregularities in the data set can seriously affect the 
performance of this metric.  

Here, we will propose and analyze several algorithms that 
assign linearity values to sets of points. We will concentrate on 
the more basic part of just assigning linearity values to finite 
sets of points. The application of such linearity assignments in 
computer vision is left as future work. We will focus on 7 
separate algorithms for testing linearity. They are called: 
average orientations, rotation correlation, triangle heights, 
triangle perimeters, contour smoothness, eccentricity, and 
ellipse axis ratio. Contour smoothness and eccentricity were 
adapted from measures of circularity. The rotation correlation 
and average orientation schemes first find the orientation line 
of the set of points using moments. The average orientations 
method takes k pairs of points and finds the unit normals to the 
lines that they form. The unit normals all point in the same 
direction (along the normal to the orientation line). The average 
normal value (A, B) of all of the k pairs is found, and the 
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linearity value is calculated as 22 BA + . In the rotation 
correlation method, the set of points is then rotated such that its 
orientation line is 45o from the x-axis. This rotation is 
performed to give equal weights to both the x and y coordinate 
values in the correlation formula. Correlation is performed on 
the rotated set of points to determine linearity. Triangle heights 
takes an average value of the relative heights of triangles 
formed by taking random triplets of points. Relative heights are 
heights that are divided by the longest side of the triangle, then 
normalized so that we obtain a linearity value in the interval [0, 
1]. Triangle perimeters takes the normalized, average value of 
the area divided by the square of the perimeter of triplets of 
points as its linearity measure. Contour smoothness and 
eccentricity are simple formulas involving moments that were 
found in literature, and adapted to finding linearity [C]. We 
prove, theoretically and experimentally, that the eccentricity 
and rotation correlation methods give same linearity measures. 
Ellipse axis ratio is based on the minor/major axis ratio of the 
best ellipse that fits the set of points.  

The literature review is given in section 2. Linearity 
measures are presented in section 3. The results of the 
algorithms along with the comparison to the linearity 
classification of the shapes by humans are presented in section 
4. The algorithms were tested on a set of 30 shapes. These 
shapes were assembled by hand and are meant to cover a wide 
variety of non trivial curves. The most interesting finding is 
that the rotation correlation method produces identical results 
on the set of test shapes to the eccentricity method. These two 
linearity measures are conceptually completely different, yet 
we show here that they are in fact the same measure. The 
closest one to human perception was the measure obtained 
from the contour smoothness algorithm. The methods based on 
sampling k pairs or triplets were faster than others, yet gave 
reasonably accurate linearity measures. Linearity values for 
large values of k gave similar results to linearity values for 
reasonable values of k such as 250-500.  

II. LITERATURE REVIEW 
We will describe several well known functions on finite 

sets of points that are used in our linearity measures here.  

A. Discussion on Moments, Orientation and Correlation 
The central moment of order pq of a set of points Q is: 
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where S is the number of points in Q, and (xc, yc) is the center 
of mass of the set Q. The center of mass is the average value of 
each coordinate in the set, and is determined as follows: 
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where (xi, yi), 1≤i≤S, are real coordinates of points from Q. The 
angle of orientation of the set of points Q is determined by [C]: 
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All definitions are applied on a set of points with real 
coordinates. Moments, however, are also defined for infinite 
sets of points, such as open or closed curves, or for all points 
located inside a closed curve. Moments are typically used on a 
closed curve, where all point within the closed curve (the area 
of the closed curve) are considered in their calculation. We use 
the moment calculations on just the finite set of points which 
are on the border of a closed curve, or all the points of an open 
curve. It was observed that the formula for the orientation line 
sometimes produces a line that is orthogonal to the desired one. 
We prove (omitted for space limits) that the actual orientation 
is either the one from the above formula or its orthogonal line, 
and used this fact in several linearity measures. We find that 
the orientation of the border points of a closed curve is almost 
identical to the orientation of all of the digital points inside the 
closed curve. We are especially interested in digitized curves 
which are used in our experiments.  

Correlation is another well known function that is used in 
this article. It returns a correlation value between -1 and 1:  
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B. Relevant shape measures 
The most relevant and applicable shape measure to our 

work is the measuring of rectangularity. The standard method 
for measuring rectangularity is to use the ratio of the region’s 
area against the area of its minimum bounding rectangle 
(MBR) [R2]. A weakness of using the MBR is that it is very 
sensitive to protrusions from the region. A narrow spike out of 
the region can vastly inflate the area of the MBR, and thereby 
produce very poor rectangularity estimates. This goes against 
our stated criteria.  

Three new methods for measuring the rectangularity of 
regions are developed by Rosin [R2]. They are tested together 
with the standard minimum bounding rectangle method on 
synthetic and real data. It is concluded that, while all the 
methods have their drawbacks, the best two are the bounding 
rectangle and discrepancy methods. The discrepancy method 
estimates rectangle sides in two ways, and measures the 
agreement between the two. One of the ways to measure the 
sides of a rectangle is to find the best ellipse that corresponds to 
the region, and estimate the rectangle’s measurements by using 
the minor and major axes of such an ellipse. This method uses 
second order moments. The formulas for the major axis a and 
minor axis b of the best fit ellipse are: 
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Zunic and Rosin [ZR1] described shape measures intended 
to describe the extent to which a closed polygon is rectilinear 
(each corner angle is 90o or 270o). The two measures [ZR1] are 
based on the maximum ratio of perimeters measured by two 
metrics. One metric is the Euclidean distance while the other is 
city block distance (sum of differences in each coordinate). 
When polygon rotates, the city block based perimeter changes. 
They prove that a polygon is rectilinear if and only if there 
exists an angle α such that the city block based perimeter for 
polygon rotated by α is the same as the Euclidean distance 
based perimeter. They show that these maximums for n-gons 
can be obtained by testing at most 4n angles of rotation.  

The most frequently used convexity measure in practice is 
the ratio between the area of polygon and area of its convex 
hull [SHB]. Zunic and Rosin [ZR2] discussed two measures 
that have advantages when measuring convexity of shapes with 
holes. [ZR2] first proposed to measure the ratio of the largest 
convex polygon contained inside a given one, and the area of 
polygon, but noted that it is computationally expensive to 
apply. Then they proposed to measure the ratio of the 
Euclidean perimeters of a given shape its convex hull. 
Convexity measures were also studied in [S, B].  

Rosin [R1] described several measures for sigmoidality. It 
is roughly a measure of ‘S’ shape where the ‘fullness’ 
(thickness) of the shape is not taken into account. Rosin [R1] 
proposed to fit cubic polynomials, but without the quadratic 
term, to ensure a symmetric curve.  Data are rotated so that 
principal axis is the x-axis, then least square fitting is applied. 
The correlation coefficient is used to measure the quality of the 
fit. Negative correlations are ignored. The second approach in 
[R1] is to consider (somewhat Gaussian) tangent angles. The 
function parameters are determined by matching mean absolute 
values and variances, area under curve is normalized to one, 
and correlation is used to measure sigmoidality. The third 
approach in [R1] is based on curvature analysis. Positive and 
negative curvature values are separated and summed over the 
curve to the left and right of midpoint. The sums should be 
large and differences small with respect to overall area of the 
curve with respect to central line of symmetry. 

The contour smoothness measure was described in [C] as a 
measure of circularity, and was adapted and converted here 
into a measure of linearity. The idea remained the same, but the 
resulting measurements were interpreted differently. In the 
original scheme in [C], they proposed a measure of circularity 
by dividing the area of a shape by the square of its perimeter.  

III. MEASURING LINEARITY 
The algorithms that we proposed and analyzed for 

measuring linearity are described here. They are called: 
average orientations, rotation correlation or eccentricity, 
triangle heights, triangle perimeters, contour smoothness, and 
ellipse axis ratio. All of the algorithms give results which are 
invariant to scaling, translation and rotation of sets of points. 
The average orientation, triangle heights and triangle 
perimeters algorithms use a parameter k which represents the 
sampling rate of points taken to determine linearity. This k can 
be automatically determined by each algorithm, for sufficiently 

accurate linearity measure, or for rejecting linearity of a set 
with sufficient confidence.  

1) Average Orientations 
Here, we first find the center of mass of the point set, and 

its angle of orientation using moments. This function takes k 
random pairs of points along the curve. It finds their slopes (m), 
and finds the normals to their slopes (-m, 1). Each normal is 
saved as a vector (-m/norm, 1/norm) in array ab, where 
norm= 12 +m  is a normalization factor. These vectors are 
compared against the normal to the orientation line determined 
by the moments formula above (-M, 1), where M=tan(angle). 
The dot product of (-M, 1) and (-m, 1), for each pair of points is 
evaluated as dp=mM+1. If dp<0, the vector (m/norm, -1/norm) 
is stored instead. All normals are oriented to point in the same 
general direction with respect to the vector (-M, 1). They are 
pointed in the same direction since the vectors would otherwise 
cancel each other out in the case of a perfectly straight line, and 
give a linearity value near 0. Please see Figure 1 below.  

 
Figure 1.  Normals all oriented in the same direction 

These normals in array ab are averaged out, and the 
resulting normal (A, B) is deemed to be the normal to the 
orientation of the curve. The averaging is done separately for 
each vector coordinate. The measure of linearity is defined 
as 22 BA + . In the case of a perfectly straight line, all of the 
unit vectors would point in the same direction, and have a 
height of 1 with respect to the orientation line. Otherwise, the 
resulting average orientation would not be orthogonal to the 
orientation line, and would have a magnitude less than 1. Since 
the moment function sometimes produces orientation lines 
which are 90 degrees offset from what is visually the actual 
orientation line, we repeat the entire procedure for 
angle=angle+π/2, and select the higher of the two measures.  

The linearity measure produces numbers in the interval 
[2/π, 1] (for a circle it is 2/π ≈ 0.636), as proven in Appendix I. 
This is normalized to [0,1]: linearity← (linearity-2/π)/(1-2/π);  

2) Rotation Correlation/Eccentricity 
Correlation is a standard tool in statistics for determining 

whether there is a relation between two sets of points. If we 
consider the x and y values of points in a space separately, and 
apply correlation, we can directly measure linearity. Again, we 
first find the center of mass of the set of points along with its 
orientation. In this algorithm, the curve in question is rotated 
so that its new orientation is at an angle of 45o from the x-axis. 
Correlation is then done on the rotated curve. The linearity 
measure is the absolute value of the measured correlation of 
points (xi, yi) on the rotated curve. The procedure is repeated 
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for the orientation line which is at an angle1=angle+π/2, 
where angle is the original angle of orientation as determined 
by the moment function. The final output of the program is the 
greater of the two correlation values.  

Eccentricity was the simplest measure of linearity we could 
find. It was also used in [C]. The output of this algorithm is 
already in the interval [0, 1], so there was no need to normalize 
it. Eccentricity measures the elongation of a disc. Since lines 
are degenerate discs, this measure can be directly applied to 
measuring linearity. For a disc, this measure outputs 0, for a 
line, it outputs 1 since lines are eccentric. The formula is 
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Theorem 1: Rotation correlation and eccentricity always 
yield the same linearity measures. 

Proof: It is well known that the correlation measure is 
invariant to translation of data. Therefore we can translate data 
so that center of mass is moved to the origin, and thus µ01= 
µ10=0. The correlation measure is then transformed into the 
following form: 0220110 µµµ=nCorrelatio . When the 
orientation line coincides with the  x-axis, the angle is 0, and 
from 0.5*arctan(2µ11/(µ20-µ02))=0 we obtain µ11=0. Rotation 
around the origin for an angle A moves point with coordinates 
(x, y) to point (x cos A – y sin A, x sin A + y cos A). We have 
applied rotation for the angle π/4. When this is applied to every 
point from the set, the correlation will change to correlation1= 
(µ20- µ02)/(µ20+ µ02), which can be verified by straightforward 
algebraic manipulation. On the other hand, the linearity by 
eccentricity formula is invariant with respect to rotation. 
Consider the case when the orientation line coincides with the 
x-axis. Then µ11=0 and the formula is transformed to |µ20-
µ02|/(µ20+µ02). This is the same formula as |correlation1|. The 
possible change in sign has been corrected by the algorithm 
that only considers the absolute value of correlation, and 
therefore the two methods always give the same result. 

3) Triangle heights 
Here, we take k triplets of random points from the set and 

compute the heights h to the longest side of the triangles that 
the triplets form. This h value is divided by the longest side c 
of the triangle to normalize the measure. This value is called 
hc. We use the average of these k hc values as a linearity 
measure of the set of points.  Figure 2 illustrates this point.  

 
Figure 2.  Triangle formed by 3 random points, and its height h 

Obviously, a low average of hc would represent a linear set 
of lines. Therefore, the average hc value is adjusted to fit the 
norm of higher linearity values representing linear sets of 
points. The minimum value of hc is 0. The maximum ratio for 
a height of a triangle is obtained in an equilateral triangle. In 

such cases, 23 ah = , where a is the length of a side of an 
equilateral triangle, and the ratio is 23 . To define a 
measure that will allocate 1 to linear points, and 0 to the 
considered case of three vertices of an equilateral triangle, each 
hc value is adjusted as follows: ( )321 hchc −= . 

The range of obtained linearity values of this algorithm are 
still in the range of (0.66, 1) for the examples that we tested. 
The minimum value of 0.66 is obtained for circles. We stretch 
out this interval by adjusting the linearity as follows: 

( ) 34.066.0−= hclinearity . 
4) Triangle Perimeters 

This method is similar to the previous one in the sense that 
we take k triplets of random points from the set of points and 
compute a variation of the perimeters of the triangles that the 
triplets form. The three sides of the triangle are labeled a, b and 
c, where a≤b≤c. The measure that we are interested in is p = 
(2c-a-b)/c. If these three points form a triangle which is 
degenerate in the form of a line, then p close to 1. The 
minimum value is 0 for the vertices of an equilateral triangle. 
We take the average value p to measure linearity. The linearity 
measure of circles is found to be 0.76. The value 0.76 was the 
lowest obtained p value in our experiments, and was therefore 
mapped to 1. Therefore, we need to stretch as follows: 

( ) 24.076.0−= plinearity . 
Although p can have values of 1 in theory (for the set of 3 

points which are the vertices of an equilateral triangle), in 
practice the random triplets rarely produce an equilateral 
triangle, and experimentation shows that it is best to stretch the 
linearity interval using the parameters shown.  

5) Contour Smoothness 
The original smoothness formula in [C] was defined as 

4πS/P2. In their formula, S is the area of the shape, and P is its 
perimeter. This is another measuring scheme that was adapted 
for linearity. It bases its measurements on the area of a shape 
divided by the square of its perimeter. This measure was 
inspired by the compactness measure. We did not take the area 
of the entire shape into consideration at once. Instead, we once 
again applied our technique of sampling the point set by taking 
triplets of points, and averaging out their triangular areas. Each 
triplet of points produces a smoothness value in the form of 
area/perimeter2. The maximum value for area divided by the 
triangle perimeter is 363 (for an equilateral triangle). After 
smoothness values are averaged to produce value sums, the 
result is adjusted as follows: 336 sumssums = . 

This limits sums to 1. We reversed the meaning of this 
smoothness measurement by taking the compliment of the 
obtained value. The measured value for circles is then 0.45. 
The final measure is ( ) 55.045.01 −−= sumslinearity . 

6) Ellipse Axis Ratio 
We use the idea of measuring rectangularity as proposed in 

[R2], and adapt it to measuring linearity. The concept is similar 
to the eccentricity measurement. We first find the center of 
mass and the first and second order moments of the set of input 
points, and then find the values of the major and minor axis of 
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the best fit ellipse as determined by the formulas in [R2]. The 
linearity value is 1-minor axis/major axis.  

IV. EXPERIMENTAL DATA 
We develop seven algorithms which assign linearity 

measures to finite sets of points (two of them are identified to 
be the same). These algorithms are implemented on Windows 
machines in C++ using Intel’s computer vision library of basic 
functions called OpenCV. The input to each algorithm is a 
black and white image of size 400x400 pixels with white pixels 
representing the background, and black pixels representing the 
curves (set of pixels) to be tested for linearity. Each point in the 
image can be referenced with two integers (xi, yi).  

The set of test images is seen in Figure 3. All 30 are 
examined by each algorithm. Their linearity values are 
presented in table 1.  All of the digital points in the solid 
figures (circle, hexagon etc.) are taken into consideration when 
evaluating linearity. Linearity values for “solid” shapes are 
very similar to the linearity values of just their borders. 

 
Figure 3.  Test examples 

The basic framework of each algorithm involved extracting 
the black pixels from the image and putting them into an 
unordered list. This list of unordered points would be passed to 
each algorithm for processing. The output of each algorithm 
would be a real number in the interval [0, 1] identifying the 
linearity measure of the set of points. 1 means perfectly linear, 
whereas lesser values mean the shapes are less and less linear. 

The table outlining the results of all six algorithms is shown 
below. The columns are labeled after the algorithms: Average 

Orientations (AO), Rotation Correlation and Eccentricity 
(RC/E), Triangle Heights (TH), Triangle Perimeters (TP), 
Contour Smoothness (CS) and Ellipse Axis Ratio (EAR). The 
Average Human Perception column (AHP) shows the average 
results per figure of human measurements. The Standard 
Deviation of Human perception (SDH) is seen in the next 
column, followed by the Standard Deviation of Algorithms 
(SDA). The results of each algorithm were compared to this 
column when their accuracy was determined. The correlation 
values of each algorithm to the average human measurements 
are seen at the bottom of the table.  

The comparison to human perception was done by 
correlating the results of each algorithm with the AHP 
column. According to these measurements, we conclude that 
the AO algorithm produced the best results. All of the 
algorithms produced relatively similar results, but the RC/E 
method showed itself to be the weakest when compared to the 
human average. The k value for the AO, TH and TP 
algorithms was 500 for the results seen in Table I. 

TABLE I.  RESULTS OF LINEARITY ALGORITHMS 

 AO RC/E TH TP CS EAR AHP SDH SDA 
1 99 100 99 100 98 100 100 0.0 0.8 
2 88 99 75 86 69 90 86 16.8 10.8
3 83 97 64 78 57 87 83 17.0 14.9
4 91 99 82 91 77 94 81 16.3 8.1 
5 88 98 74 86 67 91 81 11.8 11.4
6 73 92 53 64 45 80 78 17.9 17.4
7 80 93 59 71 51 81 78 18.3 15.5
8 95 99 85 96 79 93 76 8.9 7.6 
9 85 98 75 88 68 90 71 18.9 10.8

10 59 73 58 69 51 61 66 20.9 8.0 
11 81 97 70 82 63 83 62 23.7 11.7
12 42 65 42 53 33 54 61 21.2 11.4
13 61 83 40 49 35 70 56 21.1 18.4
14 27 50 13 17 10 43 54 22.6 16.5
15 72 86 64 81 53 72 52 22.8 11.8
16 53 61 7 41 32 12 50 21.7 21.7
17 49 71 30 39 24 59 49 25.1 17.8
18 55 83 36 46 29 69 45 17.8 20.4
19 29 48 19 25 16 41 40 16.5 12.5
20 74 92 53 65 46 79 40 20.3 17.0
21 62 79 55 71 44 66 35 25.2 12.3
22 49 71 33 43 26 59 27 18.7 16.6
23 17 28 15 19 12 25 22 17.1 6.1 
24 56 74 26 36 20 61 20 16.4 21.4
25 12 19 10 6 13 17 20 18.1 4.7 
26 1 1 2 3 2 1 18 18.3 0.8 
27 44 79 12 57 42 65 17 13.4 23.1
28 7 14 1 4 0 13 15 19.5 6.0 
29 2 6 10 13 7 6 8 7.3 3.8 
30 3 0 6 1 3 0 0 0.9 2.3 

Corr:  .859 .803  .856  .833  .849  .809 
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V. CONLUSIONS 
There are a number of possible extensions of this work. 

First of all, various applications could be discussed. In addition 
to computer vision applications, the proposed linearity 
measures have potential applications in manufacturing, for 
estimating the linearity of an axis of an object [BRP, OLC]. We 
believe that most of the presented measures can be extended to 
three dimensions and even further to arbitrary dimensions, to 
measure flatness of a finite set of points. It is an interesting 
problem to measure digital linearity rather than linearity of a 
set of points. That is, how much a set of digital points is a 
digital line, according to a certain digitization scheme. Finally, 
we are currently extending this work to measure linearity of an 
ordered set of points. The proposed measures are adopted by 
also considering the ordering of points when projected along 
the orientation line. We are also applying such a measure to 
polygonization of curves. 
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VII. APPENDIX I: MINIMUM AVERAGE ORIENTATION 
MEASURE 

In Lemma 1, the number k of point pairs is approaching 
infinity, and the set of points on the circle is assumed to be 
infinite and consisting of all points on the circle perimeter. The 
average orientation measure in the following lemma and 
theorem refers to measurement before applying normalization, 
which brings the linearity measure of a circle from 2/π  to 0. 

Lemma 1. Average orientation measure of set of points on 
the perimeter of a circle is 2/π ≈ 0.6366. 

Proof. For given orientation line with angle θ, and k pairs of 

points, with angles αi, 1≤i≤k, the measure is (∑ =

k

i 1
|cos(αi-

θ)|/k. Because of symmetry, the measure remains the same for 
any orientation line. The measure is then  

( )( )∫ ∑ =
−

π

θθπ
0

1
/cos/1 k

i i kda , 

obtained when all possible orientation lines are considered. 
The later measure is equal to 

1/(πk) (∑ =

k

i 1 ∫
π

0

|cos(αi-θ)|/k dθ. 

However, ∫
π

0

|cos(αi-θ)| dθ= ∫
π

0

|cosθ| dθ= 

∫
−

2/

2/

π

π

cosθ dθ =2 ∫
2/

0

π

cosθ dθ = 2 ∫
2/

0

π

sinθ dθ = 

=4 sin2 (θ/2)| 2/
0
π =2. 

Therefore the measure is 1/(πk) ∑ =

k

i 1
2 = 2/π. 

Theorem 2. The average orientation measure of arbitrary 
object is ≥2/π, with respect to at least one orientation line. 

Proof. The proof is by contradiction. Suppose that the 
linearity measure is < 2/π  for all orientations. Let αi, 1≤i≤k, be 
measured sample orientations. Thus  

(∑ =

k

i 1
|cos(αi-θ)|/k < 2/π  for any θ. Integrate this over all 

θ. Then S= ∫
π

0

(∑ =

k

i 1
|cos(αi-θ)|/k dθ < π 2/π =2. Thus S= 

∑ =

k

i 1
(1/k) ∫

π

0

|cos(αi-θ)| dθ <2. Therefore, there exist i such 

that ∫
π

0

|cos(αi-θ)| dθ <2. But ∫
π

0

|cos(αi-θ)| dθ =2 (see 

Lemma 1), which is a contradiction.  
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