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Abstract. It is often practical to measure how linear a certain ordered set of 
points is. We are interested in linearity measures which are invariant to rotation, 
scaling, and translation. These linearity measures should also be calculated very 
quickly and be resistant to protrusions in the data set. No such measures exist in 
literature. We propose several such measures here: average sorted orientations, 
triangle sides ratio, and the product of a monotonicity measure and one of the 
existing measures for linearity of unordered point sets. The monotonicity 
measure is also a contribution here. All measures are tested on a set of 25 
curves. Although they appear to be conceptually very different approaches, six 
monotonicity based measures appear mutually highly correlated (all 
correlations are over .93). Average sorted orientations and triangle side ratio 
appear as effectively different measures from them (correlations are about .8) 
and mutually relatively close (correlation .93). When compared to human 
measurements, the average sorted orientations and triangle side ratio methods 
prove themselves to be closest. We also apply our linearity measures to design 
new polygonal approximation algorithms for digital curves. We develop two 
polygonization algorithms: linear polygonization, and a binary search 
polygonization. Both methods search for the next break point with respect to a 
known starting point. The break point is decided by applying threshold tests 
based on a linearity measure.  
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1   Introduction 

The main motivation for this work is in image processing. Measuring the linearity of a 
finite set of points can become an interesting way of identifying the important 
components of a picture. Linear points often represent a region of interest in an 
image. By dissecting an object into an ordered collection of lines, the object becomes 
more easily identifiable; visually and computationally. Polygonization is the natural 
extension and cleanest application to measuring linearity. Simple objects are often a 
collection of straight lines. A square, triangle or even a star can be represented using a 
few vertices rather than a large number of points. For instance, polygonization is the 
basic technique of template matching in production facilities. Newly manufactured 
parts need to look like the master template to be acceptable. Polygonization is used to 
quickly compare the master to the copy.  
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In general, we are interested in measuring how linear a finite set of points is, and 
how well we can produce polygonizations based on these linearity measures. In 
analyzing various linearity algorithms, we align ourselves with the following criteria. 
We are interested in assigning linearity values to sets of points. The linearity value is 
a number in the range [0, 1]. It equals 1 if and only if the shape is linear, and equals 0 
when the shape is circular or has another form which is highly non-linear such as a 
spiral. A shape’s linearity value should be invariant under similarity transformations 
of the shape, such as scaling, rotation and translation. The algorithms should also be 
resistant to protrusions in the data set. Linearity values should also be computed by a 
simple and fast algorithm.  

It is very important to stress that points in the set are ordered. This means that 
figures such as ellipses or rectangles which are very flat (long and thin) are 
considered to be highly nonlinear. If we were to consider unordered sets of points, 
such ellipses would be highly linear. The only concrete discussion on measuring 
linearity was found in [13], but it addresses unordered sets. In [13], six linearity 
measures of unordered sets were described.  

Here, we will propose and analyze 8 algorithms that assign linearity values to 
ordered sets of points. The linearity algorithms are called: average sorted orientations, 
triangle sides ratio, and the last 6 deal with monotonicity multiplied by corresponding 
linearity measures from [13] for unordered point sets.  

Average sorted orientations finds the unit vectors along the selected ordered pairs, 
and their average vector. The linearity measure is the length of that vector. Triangle 
sides ratio method takes random triplets of ordered points A<B<C, along a curve, and 
compares the side |AC| to the sum |AB|+|BC| of the other two sides.  

We propose a measure of monotonicity of ordered point sets. Monotonicity finds 
the orientation line of the set of points and measures the behavior of the set with 
respect to this line. This is done by taking O(N) pairs of points which are relatively 
close together along the curve and finding the vector which defines them, where N is 
the number of points along the curve. For each ordered pair AiBi, its sign is positive or 
negative depending on the angle (acute or obtuse) it makes with the fixed direction of 
the orientation line. The signed sum of lengths |AiBi| is compared against the sum of 
lengths |AiBi|.  Monotonicity is multiplied by each linearity measure for unordered 
sets to make combined metrics that measure the linearity of sorted point sets.  

There are many publications that deal with polygonization, some of which are:  
[7, 8, 3, 9, 11, 14, and 15]. The algorithms need to be sensitive to large extrusions in 
the curve but should not react to small one which could be due to noise. They should 
not be restricted to modeling curves with fixed numbers of points, or with fixed 
lengths of line segments. Polygonization should be computed by elegant and fast 
algorithms. We also develop two polygonization algorithms which are called linear 
polygonization, and a binary search polygonization. Both polygonization methods try 
to split curves into appealing line segments based on a combined linearity and 
distance threshold. Linear polygonization corresponds to existing methods that 
successively add the next point from the set to the approximating line until that line 
violates the linearity test. We propose to use a D(1-L)<T test, where D is the distance 
between endpoints of the candidate edge, L is the linearity measure, and T is the 
parameter threshold. Polygonization starts again from the last point that violated the 
threshold. Binary search polygonization is a novel approach. It looks for the longest 
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possible point segment that has a satisfactory linearity measure by applying a binary 
search to the other end of the next polygon edge. Thus a longer edge may emerge, 
leveraging out some local irregularities. The polygonization algorithms were tested 
using polygonization measures defined in [7, 8, S, 11]. Although they appear to be 
conceptually very different approaches, we show that most of the linearity algorithms 
provide similar polygonization results.  

Overall in this paper, one monotonicity measure, 8 new linearity measures for 
ordered point sets and two new polygonization techniques are proposed. The literature 
review is given in section 2. Linearity and monotonicity measures and polygonal 
approximation algorithms are presented in section 3. The algorithms were tested on 
selected curves in section 4.  

2   Literature Review 

We will describe several well known functions on finite sets of points that are used in 
our linearity measures here. Existing linearity measures for unordered set will be 
covered along with other relevant measures. We also discuss existing polygonal 
approximation methods of digitized curves based on some linearity tests. Finally, we 
describe some existing measures of quality of polygonization.   

2.1   Moments and Orientation 

The central moment of order pq of a set of points Q is defined as: 
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where S is the number of points in the set Q, and (xc, yc) is the center of mass of the 
set Q. The center of mass is the average value of each coordinate in the set, and is 
determined as follows: 
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where (xi, yi), 1≤i≤S, are real coordinates of points from Q. The angle of orientation of 
the set of points Q is determined by [1]: 
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2.2   Linearity Measures for Unordered Sets 

The most relevant and applicable shape measure to our work is the measuring of 
linearity of unordered data sets. [13] is the only source in literature that deals directly 
with measuring linearity for unordered sets of points. Six linearity measures were 
proposed in [13], all of which we will adapt here. The average orientation scheme 
first finds the orientation line of the set of points using moments. The method takes k 
pairs of points and finds the unit normals to the lines that they form. The unit normals 
all point in the same direction (along the normal to the orientation line). The average 
normal value (A, B) of all of the k pairs is found, and the linearity value is calculated 
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as 22 BA + . Triangle heights takes an average value of the relative heights of 
triangles formed by taking random triplets of points. Relative heights are heights that 
are divided by the longest side of the triangle, then normalized so that we obtain a 
linearity value in the interval [0, 1]. Triangle perimeters takes the normalized, average 
value of the area divided by the square of the perimeter of triplets of points as its 
linearity measure. Contour smoothness and eccentricity were adapted from measures 
of circularity. They are simple formulas involving moments that were found in 
literature, and adapted to finding linearity [1]. The idea remained the same, but the 
resulting measurements were interpreted differently. In the original scheme in [1], 
they proposed a measure of circularity by dividing the area of a shape by the square of 
its perimeter. For circles, they arrived at circularities of 1, and values of less than 1 for 
other objects. Ellipse axis ratio is based on the minor/major axis ratio of the best 
ellipse that fits the set of points.  

2.3   Relevant Measures 

The standard method for measuring rectangularity is to use the ratio of the region’s 
area against the area of its minimum bounding rectangle (MBR) [5]. A weakness of 
using the MBR is that it is very sensitive to protrusions from the region. A narrow 
spike out of the region can vastly inflate the area of the MBR, and thereby produce 
very poor rectangularity estimates. This goes against our stated criteria. Three new 
methods for measuring the rectangularity of regions are developed by Rosin [5].  

Zunic and Rosin [16] described shape measures intended to describe the extent to 
which a closed polygon is rectilinear (each corner angle is 90o or 270o). The most 
frequently used convexity measure in practice is the ratio between the area of polygon 
and area of its convex hull [12]. Zunic and Rosin [17] discussed two measures that 
have advantages when measuring convexity of shapes with holes. Rosin [4] described 
several measures for sigmoidality.  

Broder and Rosenfeld [BR] define a measure of collinearity merit for two adjacent 
line segment AB and CD (A<B<C<D on the curve) as follows. The measure is 
|AD|(|AB|+|CD|)/ (|AB|+|BC|+|CD|)2cos∠ABCcos∠BCD. However it cannot be used 
to measure colinearity of four arbitrary points from the curve. It also does not give 
colinearity close to 1 for digital lines due to frequent ‘staircases’ among pixels. In 
fact, it may even produce a zero factors in the product for certain straight line 
digitizations. Therefore we could not adopt it for our application. 

2.4   Polygonal Approximation of Digitized Curves 

There exist over a hundred algorithms for polygonization of digitized curves. We will 
discuss those that are based on similar strategy that is used here. A starting point S is 
selected, and the longest possible line segment SA. Then A becomes the new starting 
point (breakpoint) and the procedure repeats until the endpoint is reached. Methods 
differ based on the ‘almost colinearity’ test used. We identified only ‘linear search’ 
based methods, where colinearity is tested by successive adding one pixel at a time 
until the colinearity test fails. 
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Williams [W] used the cone intersection method to find the maximal possible line 
segment. Circles of fixed radius are drawn around each point. Points are then added 
one after another to the initial point until the intersection of all the cones with their 
vertex at the initial point and touching these circles is an empty set. The test used by 
Pavlidis [P] is based on maximal distance to a specific line segment and number of 
sign changes of points with respect to that line, and three parameters. Wall and 
Dannielsson [WD] find the maximal line segment by merging points one after another 
until the area deviation per unit length of the approximating line segment exceeds a 
maximum allowed threshold value. Ray and Ray [9] define three points to be 
collinear if the radius of largest inscribed circle inside their triangle is below a certain 
threshold. They assume that a set of points is collinear if the set containing the initial 
point and the last two points is collinear, and, recursively, the same set of points, 
without the last one, is collinear.  

A common feature of all of the described methods is that they are based on a test 
(without measuring how linear a segment is) with parameters that are not scale 
invariant. Thus the same curve will yield different polygonizations on digitizations 
with different resolutions or with different curve sizes. 

2.5   Evaluation of Polygonization Methods 

Rosin [7, 8] identified enormous number of available methods for finding polygonal 
approximations, and discussed techniques for evaluating them. One popular metric is 
figure of merit, FOM=N/(M*ISE) [S], where N is the number of points on the curve, 
M is the number of vertices of the obtained polygon, and ISE is the integral square 
error. ISE is the sum of squares of distances of each point on the curve from the 
corresponding edge of the polygon. [11] observes that ISE depends on the size of 
object, but does not change the definition. Marji and Siu [3] modified FOM by adding 
a parameter n, defining it as (N/M)n/ISE, where n=1,2,3. 

Rosin [7] proposed several new measures of polygonization quality: fidelity, 
efficiency and merit. Fidelity is measured as Eo/E, where E is ISE produced by 
measured algorithm, and Eo is ISE produced by the optimal algorithm, which is the 
one that produces the same number of lines but minimizes ISE. Efficiency is measured 
as M0/M, where M is the number of lines produced by measured algorithm, and M0 is 
the number of lines produced by an optimal algorithm, which is the minimal possible 
number of lines of an algorithm that produces the same ISE. Merit is then defined 
as efficiencyfidelity * . 

Rosin [8] proposed monotonicity and consistency measures of polygonization 
stability. Monotonicity measures how well the number of generated lines and ISE 
by given method follow selected parameter in the given method. In a number of 
domination point based methods, the selected parameter is M, the desired number of 
lines. A perfectly monotone method is then supposed to always reduce ISE when M 
is increased, and monotonicity measures the amount of discrepancy in such 
behavior. Consistency measures the effect of deleting certain number of pixel from 
the beginning of the curve on breakpoint position, number of breakpoints, ISE, 
merit etc. 
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3   Measuring Linearity and Polygonization 

Here, we will describe the measures of linearity of ordered sets, the monotonicity 
measure, and the two polygonization schemes which constitute the contributions of 
this article. The monotonicity measure is the only one not used independently in 
either linearity measurement or polygonization. It is combined with other measures to 
achieve usable results. 

3.1   Linearity of Ordered Sets of Points and Monotonicity 

A. Average Sorted Orientations 
Average sorted orientations works much the same as its average orientations 
predecessor [13], but points are taken such that the second comes after the first in the 
ordered set. Also, the slopes are directly averaged, without any reference to the 
orientation line.  Figure 1 shows that only the magnitude of the average ordered unit 
vectors determines the linearity measure. This makes this metric faster to compute 
than the average orientations protocol in [13].  

 
Fig. 1. Average Sorted Orientations 

B. Triangle Sides Ratio 
Here, we take k ordered triplets of points, and measure their average colinearity. For 
each triple, divide the length of the side of the triangle whose endpoints are furthest 
apart in the sorted point array by the sum of the lengths of the other two sides. Figure 
2 shows that the red side of the triangle AC is the one who’s endpoints are furthest 
apart in the ordered array. The length of the side AC is divided by the sum of the 
lengths of the other two blue sides.  

 

Fig. 2. Triangle sides ratio example 

C. Monotonicity 
Monotonicity measures the behavior of curves with respect to their orientation line. It 
is expected that monotonic curves define a more linear ordered set of points than non-
monotonic curves. Here, we first find the orientation line of the set of point which we 
are interested in, and measure the monotonicity of this set relative to this line. Since 
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the moment function sometimes produces orientation lines which are 90 degrees 
offset from what is visually the actual orientation line, we repeat the entire procedure 
for angle=angle+π/2, and select the higher of the two measures. In Figure 3, we see 
that the curve on the left is completely monotone with respect to its blue orientation 
line, whereas the curve on the right is not monotone. 

 

Fig. 3. Monotonicity examples 

The algorithm works by taking N-4 pairs of points which are 4 positions apart. We 
chose to take points which are 4 positions apart in the array of ordered points since 
points which were closer together did not represent the natural slope of the curve due 
to digitization. A vector v is found for each pair of points. For each v, we multiply it 
by the orientation line vector of the whole set of points via a dot product. If the dot 
product is positive, the sign s of the magnitude mag of v is positive, otherwise it is 
negative. The sum of all s*mag is divided by the sum of the absolute values of all 
mag to form a monotonicity value. Monotonicity is multiplied by each linearity 
measure to make combined metrics that measure the linearity of sorted point sets.  

Figure 4 shows a concrete yet simplified example of how the monotonicity 
algorithm works. We take only 4 pairs of points to capture the spirit of the method. 
The orientation line is seen below the figure. All of the dark blue arrows show pairs of 
points. The only pair that will have a negative dot product with the orientation line is 
pair A5A6. The monotonicity value for these 4 pairs is (absolute value of): 

(|A1A2|+|A3A4|-|A5A6|+|A7A8|)/|A1A2|+|A3A4|+|A5A6|+|A7A8|). Note that the light 
blue orientation line should actually be paced right over the curve, but was shifted to 
the side to avoid complicating the figure.  

 

Fig. 4. Monotonicity functional example 

The ordered linearity values of a shape are the result of the monotonicity measure of 
that shape multiplied with one of the six linearity measures from [13] for unordered data. 
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3.2   Polygonal Approximation of Curves 

Both polygonization algorithms are designed to be invariant to rotation. This is 
achieved through a mechanism that always selecting the same starting point. The 
starting point is chosen such that it encompasses the longest linear segment that does 
not violate the linearity threshold of that curve.  

A. Linear Extension 
This method uses a brute force method of polygonization by comparing the linearity 
of growing line segments to a threshold which depends on the length of the line 
segment and a linearity value. The threshold is in the form D(1-L)<T, where D is the 
length of the line segment, L is its linearity, and T is the threshold value. The point at 
which the threshold is violated becomes a new polygonization point, and the process 
is continued from this new point.  

Algorithm: linear extension: 
Input: array of points: Points=(Xi, Yi), 1≤i≤N, threshold T; 
Output: set of points which define a polygonal approximation; 
 
Find longest segment A1A2 such that linearity of A1A2≤T, make A1 starting point of 

polygonization; 
For i=1 to count do { 

tempLinearity=1;  pointsToTry=4; 
while (tempLinearity≥T) and (i+ pointsToTry<N) do { 

tempLinearity= Distance*Linearity (both between  points[i], and 
points[i+pointsToTry] ); 

pointsToTry++; 
} 

Memorize point: Points[i+pointsToTry] as one of points of approximating 
polygon;  

i = i+pointsToTry-1; 
} 

B. Binary Search Extension 
This is an improvement over the linear search polygonization method of the previous 
procedure. The problem with the first procedure is that new lines can be locally 
selected too quickly, while a generally long line may exist which can approximate the 
curve with fewer line segments. Given that we are performing a binary search, this 
algorithm performs faster than the linear extension method.  

 
Algorithm: Binary Search Extension: 
Input: array of points: Points=(Xi, Yi), 1≤i≤N, threshold T; 
Output: set of points which define a polygonal approximation; 
 
Find longest segment A1A2 such that linearity of A1A2≤T, make A1 starting point of 

polygonization; 
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int start=1; 
While start<>N do { 

start=polygonize(start, N, T, Points); 
memorize points[start] as next polygonization point; 

} 
 
Procedure polygonize(start, end, T, Points){ 

 if (start=end)      then return start; 
 mid=(start+end)/2; 
 find linearity lin of line segment start to mid by one of  

the linearity methods; 
find monotonicity mon of segment start to mid; 

 tempLinearity=ecc*mon; 
 dis=Euclidian distance between points start and mid; 
 templinearity=dis*(1- tempLinearity); 
 if (tempLinearity ≤T) { 
 start=polygonize(mid, end, Points); 

} else { 
 start=polygonize(start, mid, Points); 

} 
return start; 

} 

 

Fig. 5. Binary polygonization process 

The whole process is seen in Figure 5. In Fig. 5a), we see that the starting point is 
the green dot labeled start, the ending point is the red dot labeled end, and the 
midpoint between them is represented by a blue dot, and labeled mp. The algorithm 
first checks the linearity value of segment start to MP. If this linearity value satisfies 
the threshold, the next breakpoint is sought after in the segment MP to end. In this 
example, we see that the segment Start to MP is not linear enough, and therefore, the 
binary algorithm further searches for a breakpoint here. This is seen in Figure 5b), 
where the new mid and end points are marked. By continuing the binary search, we 
find the break point in Figure 5c). The segment Start to Break point is stored as part 
of the polygonization. The polygonization algorithm will restart from this break point 
in Fig. 5d).  
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4   Experimental Data 

The testing of the algorithms was done on two sets. The linearity algorithms were 
tested on a set of 25 non trivial shapes, shown in Figure 6. These shapes were 
assembled by hand and are meant to cover a wide variety of non trivial curves. The 
polygonization algorithms were executed on a set of 21 standard test curves found in 
[8], shown in Figure 7. Each curve comprises between 100 and 500 points.  

Several linearity measurement algorithms are based on selecting k pairs or triples of 
points from the set. When such procedure is called frequently by linear search based 
polygonization algorithm, the speed may become a concern. We first added speedup 
procedures to determine sample size k so that linearity measure has sufficient accuracy. 
In application, such as polygonization, it may be more common to make a judgment on 
whether or not the set is linear. This provided further speedup. Both speed 
improvements were made using basic probability theory for confidence intervals [2].  

Table 1 shows the linearity testing results for the Average Sorted Orientations 
(ASO), and Triangle Sides Ratio (TSR) algorithms. It also shows linear measures for 
six methods AO, EC, TH, TR, CS, and EAR. They are proposed in [13] for unsorted 
data sets, and were multiplied by the monotonicity values (using the algorithm 
described in this article) of each curve to make them relative to sorted data sets which 
are relevant here. The monotonicity values (MON) of each curve are seen in the last 
column.  

 

Fig. 6. Linearity test set 

To achieve higher consistency (as defined by [8]) for both polygonization methods, 
and therefore rotation independency, the initial point has been selected by first 
searching for the longest line segment in the polygon. Starting from each point, 
linearity measure was applied by linear search, extending the line as far as possible. 
The starting point of the longest such line segment was selected as the initial point. 
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Visual inspection of the polygonization results of the binary polygonization method 
can be seen in Figure 8. The binary search method was used here. The only parameter in 
this polygonization run is the linearity*distance threshold, which was set to T=1, which 
provided similar values for M as those seen in cited references. The linearity measure 
that was used to generate the polygonization was the eccentricity (EC) measure. The 
light red dot on each curve represents the starting point of each algorithm.  

Tables 2 and 3 show the polygonization results of linear extension algorithm as it is 
tested on the curves in Figure 7. Table 2 shows the number of points in each 
polygonization, and Table 3 shows the measure of N3/(M3*ISE), where N is the number 
of points in the original curve, and M is the number of points in the approximation. This 
measure is taken from [3] for n=3. It is selected for the following reason. 

        

             Fig. 7. Polygonization set                                            Fig. 8. Binary Polygonization 

Table 1. Linearity Results 

  AO EC TH TP CS EAR ASO TSR MON 

1 .95 .99 .85 .97 .80 .93 .98 .99 1 
2 .35 .56 .29 .37 .23 .47 .71 .71 .65 
3 .34 .47 .25 .31 .20 .40 .85 .91 .54 
4 .71 .83 .61 .79 .50 .70 .90 .92 .98 
5 .01 .02 0 0 0 .02 .27 .18 .16 
6 .36 .55 .24 .32 .19 .46 .82 .90 .65 
7 .10 .12 .07 .08 .06 .10 .26 .49 .13 
8 .83 .96 .73 .85 .66 .88 .94 .95 .98 
9 .35 .47 .25 .31 .20 .39 .81 .83 .69 

10 .04 .06 .02 .03 .02 .05 .45 .59 .20 
11 .05 .09 .02 .03 .01 .08 .47 .25 .16 
12 .61 .79 .50 .64 .42 .68 .89 .92 .87 
13 .23 .36 .13 .17 .11 .29 .71 .79 .53 
14 .57 .71 .44 .53 .38 .63 .91 .95 .75 
15 .09 .16 .07 .08 .05 .14 .70 .71 .32 
16 .35 .53 .35 .39 .32 .44 .79 .90 .70 
17 .05 .07 .03 .04 .02 .05 .25 .26 .09 
18 .26 .43 .28 .36 .22 .35 .76 .69 .65 
19 .59 .73 .56 .68 .49 .61 .85 .91 1 
20 .08 .13 .06 .08 .04 .11 .61 .50 .52 
21 .44 .62 .42 .54 .34 .52 .86 .82 .80 
22 1 1 .99 1 .99 1 1 1 1 
23 .64 .66 .56 .61 .53 .63 .85 .96 .67 
24 .04 .22 .24 .28 .22 .20 .64 .69 .78 
25 .41 .50 .36 .42 .32 .45 .91 .97 .51 
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Table 2. Linear Polygonization-Break Points 

  N AO EC TH TP CS EAR ASO TSR 

1 366 43 18 28 22 29 34 17 31 
2 413 55 20 36 35 36 48 21 40 
3 377 41 12 28 17 29 28 13 31 
4 352 39 13 27 19 28 36 13 35 
5 482 59 13 39 22 39 46 16 40 
6 317 22 6 23 13 23 27 9 25 
7 484 53 18 39 35 41 52 25 44 
8 474 66 33 43 44 43 60 31 37 
9 384 48 24 34 32 34 45 23 36 

10 372 40 15 27 19 27 33 15 31 
11 674 73 23 54 43 56 70 29 59 
12 290 34 8 27 18 28 34 13 30 
13 376 35 7 35 28 36 40 14 29 
14 366 40 18 30 28 30 37 17 35 
15 483 56 23 38 35 38 49 26 52 
16 427 29 14 21 20 22 27 15 33 
17 329 38 14 29 25 29 40 16 32 
18 326 34 13 27 23 27 37 16 33 
19 450 49 21 35 35 35 45 23 38 
20 386 46 12 30 29 30 39 16 34 
21 419 50 32 33 37 34 48 27 40 

av 407 45 17 33 28 33 41.7 19 36 

Our goal is to design and evaluate polygonization methods that are invariant to 
curve scaling and/or resolution applied. The curve size is described by a single 
parameter N, the number of pixels in a given digitization. Distances are measured in 
this ‘pixel’ geometry, where the distance between two neighboring pixels in 
horizontal/vertical direction is 1.  

Consider two digitizations of the same curve, with N1=N and N2=mN pixels, 
respectively. Assuming that polygonization is invariant to scaling, they should yield 
the same M, the number of selected polygon vertices, and these vertices should be at 
 

Table 3. Linear polygonization measure n3/(m3*ISE) 

  N AO EC TH TP CS EAR ASO TSR 
1 366 1.42 3.08 1.07 1.06 1.06 0.94 2.41 .00 
2 413 0.89 1.93 1.43 1.29 1.43 0.16 2.34 .45 
3 377 0.34 2.72 0.00 1.02 0.00 0.85 3.31 0 
4 352 0.99 1.64 2.44 0.70 2.57 1.80 3.07 .23 
5 482 0.09 1.10 2.09 1.75 2.13 0.00 0.00 .18 
6 317 3.51 2.32 3.72 6.96 3.78 0.00 4.33 0 
7 484 0.90 3.46 1.74 1.40 1.46 0.00 1.93 .27 
8 474 0.00 0.92 0.00 0.66 0.91 0.00 1.00 .39 
9 384 0.68 1.29 1.28 0.44 1.36 0.82 1.33 .15 

10 372 1.55 1.72 2.05 1.40 1.93 0.00 3.95 .31 
11 674 0.69 1.80 1.13 1.30 1.09 0.00 1.47 .15 
12 290 1.89 3.87 4.38 3.26 2.86 0.00 4.52 .45 
13 376 2.12 5.52 1.74 2.20 0.00 2.04 5.27 .41 
14 366 1.45 1.52 1.14 2.27 1.09 1.29 0.35 .32 
15 483 0.66 0.64 1.68 0.97 1.60 0.97 1.31 .21 
16 427 0.85 2.67 2.90 1.79 2.81 1.90 2.93 0 
17 329 1.02 2.63 1.19 1.94 1.19 1.18 1.92 .30 
18 326 0.93 2.67 3.03 2.44 2.92 1.23 0.00 .86 
19 450 0.59 0.82 1.84 0.00 1.80 0.54 2.25 0 
20 386 0.97 3.19 3.28 1.72 3.14 1.49 5.14 .36 
21 419 0.81 1.76 1.40 1.05 0.00 0.88 1.45 0 
av 407 1.06 2.25 1.88 1.70 1.67 0.77 2.39 .24 
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positions with respect to the curve. The distances of corresponding pixels in two 
digitizations are then e and me, respectively. Then ISE2 ≈ 2

1
( )

mN
me∑ ≈ m3ISE1. Thus 

N2
3/(MtISE2)≈(mN)3/(Mtm3ISE1)=N1

3/(MtISE2).  
This means that the measure N3/(MtISE) is invariant to curve scaling or resolution, 

for any t. Similar analysis can also show that some popularly used evaluation 
measures are not scalable, and that the evaluation measures depend on the numbers of 
pixels taken in a particular digitization. Measures which are not invariant to the 
 

Table 4. Binary  polygonization-break points 

  N AO EC TH TP CS EAR ASO TSR 
1 366 51 18 29 26 29 40 18 42 
2 413 81 20 36 34 36 54 21 53 
3 377 48 12 25 24 29 36 18 43 
4 352 53 13 25 24 30 40 16 55 
5 482 68 13 42 28 42 44 22 60 
6 317 33 6 26 15 31 33 11 38 
7 484 79 18 44 38 40 60 25 58 
8 474 87 33 46 50 45 71 35 53 
9 384 68 24 30 40 34 54 25 51 

10 372 51 15 33 23 33 38 20 43 
11 674 94 23 70 46 73 79 31 79 
12 290 45 8 24 25 28 39 14 39 
13 376 39 7 32 30 37 49 18 38 
14 366 55 18 35 27 35 49 21 53 
15 483 82 23 38 39 39 64 26 70 
16 427 38 14 25 26 26 38 17 44 
17 329 46 14 32 25 32 45 15 43 
18 326 50 13 29 28 30 40 17 46 
19 450 71 21 33 38 41 55 21 55 
20 386 61 12 27 26 31 46 14 48 
21 419 80 32 39 46 38 58 29 52 
av 407 61 17 34 31 36 49.1 21 51 

 

Table 5. Binary polygonization measure n3/(m3*ISE) 

  N AO EC TH TP CS EAR ASO TSR 

1 366 0.11 3.08 2.40 1.27 0.95 1.48 2.13 0.37 
2 413 0.32 1.93 0.70 1.85 0.83 1.46 1.96 0.17 
3 377 0.09 2.72 1.54 0.43 0.52 1.81 1.59 0.14 
4 352 0.37 1.64 0.20 1.13 1.08 1.44 0.96 0.17 
5 482 0.05 1.10 0.41 0.89 0.33 1.36 1.99 0.19 
6 317 0.11 2.32 0.60 2.59 1.49 4.24 0.73 0.59 
7 484 0.20 3.46 0.31 1.07 0.13 1.21 1.98 0.40 
8 474 0.28 0.92 0.30 0.64 0.38 0.50 0.84 0.17 
9 384 0.21 1.29 0.19 0.53 0.67 0.68 0.73 0.19 
10 372 0.46 1.72 0.88 2.21 0.48 1.07 0.48 0.25 
11 674 0.41 1.80 0.28 1.21 0.35 0.35 0.71 0.31 
12 290 0.69 3.87 1.52 1.26 1.65 1.75 0.95 0.41 
13 376 0.43 5.52 0.10 0.81 0.28 0.72 1.56 0.18 
14 366 0.17 1.52 0.58 0.57 0.39 0.50 1.06 0.72 
15 483 0.20 0.64 0.58 1.80 0.54 1.03 1.61 0.44 
16 427 0.67 2.67 2.25 1.83 2.03 0.76 6.20 0.09 
17 329 0.75 2.63 0.21 1.12 0.06 2.15 2.95 0.61 
18 326 0.27 2.67 1.90 0.82 1.76 0.90 1.92 0.46 
19 450 0.19 0.82 0.26 1.05 0.97 0.36 1.39 0.29 
20 386 0.09 3.19 0.20 0.42 1.65 0.15 3.98 0.56 
21 419 0.20 1.76 0.77 0.47 0.79 0.47 1.21 0.28 
av 407 0.30 2.25 0.77 1.14 0.82 1.16 1.76 0.33 
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number of pixels on the curve include FOM [10] used very frequently (it behaves as 
the inverse of m2), and (N/M)n/ISE [3] for n≠3.  

Tables 4 and 5 show the binary polygonization results of this algorithm as it is 
tested on the curves in Figure 7. They follow the format and meaning of the previous 
two tables. The best algorithm for polygonization according to the n3/(m3*ISE) 
measure was the linear polygonization method combined with the average sorted 
orientations linearity metric. The closest competitor was binary polygonization 
combined with the eccentricity linearity metric.  

5   Conclusion 

Since the values N were not reported in given references, and the measures used were 
either not scalable or requiring further information about parameters used in testing, 
direct comparison of our polygonization schemes with other exiting methods was left 
for future work. This is part of our plan for further extensions of this work in several 
directions. We will study new linearity measures, and new evaluation measures for 
polygonization, including new ways to evaluate ISE. We will then be in a position to 
properly compare some of the existing methods and our new ones, using scale 
invariant measures. 
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