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Abstract

We define the higher dimensional hexagonal graphs as the generalization of a triangular plane tessellation, and consider it as a

multiprocessor interconnection network. Nodes in a k-dimensional (k-D) hexagonal network are placed at the vertices of a k-D

triangular tessellation, so that each node has up to 2k þ 2 neighbors. In this paper, we propose a simple addressing scheme for the

nodes, which leads to a straightforward formula for computing the distance between nodes and a very simple and elegant routing

algorithm. The number of shortest paths between any two nodes and their description are also provided in this paper. We then

derive closed formulas for the surface area (volume) of these networks, which are defined as the number of nodes located at a given

distance (up to a given distance, respectively) from the origin node. The number of nodes and the network diameter under a more

symmetrical border conditions are also derived. We show that a k-D hexagonal network of size t has the same degree, the same or

lower diameter, and fewer nodes than a ðk þ 1Þ-D mesh of size t. Simple embeddings between two networks are also described. That

is, we show how to reduce the dimension of a mesh by removing some nodes, and converting it into a hexagonal network, while

preserving the simplicity of basic data communication schemes such as routing and broadcasting.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Direct interconnection networks can be modeled by
graphs, with nodes and edges corresponding to proces-
sors and communication links between them, respec-
tively. A survey of these networks is given in [23]. This
paper proposes a new direct interconnection network
model. It also studies addressing and routing schemes
for some topological properties of the new model, such
as: degree (maximal number of edges from a node), node
and edge symmetry and surface area (defined as the
number of nodes at a given distance from the origin
node).
There exist three regular plane tessellations, com-

posed of the same kind of regular (equilateral) polygons:
triangular, square, and hexagonal. They are the basis for
the designs of direct interconnection networks with
highly competitive overall performance. Mesh con-
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nected computers and tori (tori are meshes with added
links between the first and the last processor in any row
or column, that is, in any direction for the higher
dimensional case) are based on regular square tessella-
tions, and are popular and well-known models for
parallel processing. Their extension, the m-ary k-cube,
has been used as the underlying topology for most
practical multicomputers (e.g. J-machine [17], iWarp
[19], Ncube-2 [16], Cray T3E [1] and Cray T3D [12]),
and has been extensively studied in the literature. The
topological properties and routing algorithms for the m-
ary k-cubes have been extensively studied in the past
[10]. An expression for the surface area of a t-ary k-cube
is provided in [2,3].
Hexagonal and honeycomb networks are based on

regular triangular and hexagonal tessellations, respec-
tively. The inconsistency in the name selection (note that
a hexagonal network is not based on a hexagon, but on
a triangular tessellation) is due to the duality of the two
tessellations (one can be obtained from the other by
joining the centers of the neighboring polygons) and the
name selection taken in the past, which other authors
kept afterwards.
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Fig. 1. Addressing scheme for hexagonal networks.
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Honeycomb and hexagonal networks have been
studied in a variety of contexts. They have been applied
in chemistry to model benzenoid hydrocarbons [24], in
image processing, in computer graphics [13], and in
cellular networks [11]. The Honeycomb architecture was
proposed in [22], where a suitable addressing scheme
together with routing and broadcasting algorithms were
investigated. Some topological properties and commu-
nication algorithms for the honeycomb network and tori
have been also investigated in [6,14,15,18]. Higher
dimensional honeycomb networks have been defined in
[7] as a generalization of the plane honeycomb net-
works. Addressing, routing and broadcasting algorithms
have been also proposed. The network cost, defined as
the product of the network degree and its diameter, has
been shown to perform better for the honeycomb
network than for the mesh multiprocessor network
[22,7].
The (two-dimensional) hexagonal torus has been used

in the HARTS project [21]. An addressing scheme for
the processors, and the corresponding routing and
broadcasting algorithms for a hexagonal interconnec-
tion network have been proposed by Chen et al. [8]. The
performance of hexagonal networks has been further
studied in [9,20]. The approach proposed in [8] is a
cumbersome addressing scheme which has lead to a page
long complex routing algorithm, and similarly to a
complex broadcasting scheme. Consequently, the lack of
a convenient addressing scheme and the absence of
elegant routing and broadcasting algorithms (basic in
the design of a commercial network) has discouraged
further research on this type of network. Carle and
Myoupo [5] recently revisited this network and at-
tempted to simplify the addressing, routing and broad-
casting schemes given in [8] with partial success. They
suggested a co-ordinate system for hexagonal networks
that uses two axes, at 120� between them, which are
parallel to two out of the three edge directions. Using
this scheme, they have described routing and broad-
casting algorithms for the network. However, their
scheme exhibits asymmetry which complicates the
routing algorithm (for that reason, the routing algo-
rithm is even omitted from [5] and a reference to their
technical report is given instead). Their broadcasting
algorithm, on the other hand, is very elegant. A variant
of this addressing scheme has been proposed by Zhang
[25] in the context of a distance-based location update
scheme in cellular networks. A formula for the distance
between two base stations is given, and a corresponding
routing algorithm is proposed. Both addressing and
routing schemes in [25] have been further simplified in
[11]. These schemes have been then applied in [11] to
solve the distance calculation for location update and
connection rerouting problems in cellular networks.
Fig. 1 illustrates the co-ordinate system for the

honeycomb network proposed by Stojmenovic [22],
and adopted for 2-D hexagonal networks by Garcı́a
et al. [11]. In this scheme, three axes, x, y, and z, parallel
to the three edge directions, and at mutual angle of 120
between any two of them are introduced. Let i, j and k
be the three unit vectors in these axes. These three
vectors are, obviously, not independent. More
precisely, they are related by i þ j þ k ¼ 0: However,
this redundancy greatly simplifies the addressing,
the distance formula, and the routing algorithm. Details
for the addressing schemes for the honeycomb
and the hexagonal networks can be found in [22,11].
This co-ordinate system has been generalized by
Carle et al. [7] for higher dimensional honeycomb
networks.
Higher dimensional mesh connected computers are

straightforward generalizations of 2-D meshes since a
regular square plane tessellation easily generalizes in
space. That is, the higher dimensional space can be
partitioned into higher dimensional cubes, or hyper-
cubes. One such hypercube consists of all nodes whose
address is (x1;y; xk) where aipxipai þ 1 for 1pipk:
In other words, each of the k co-ordinates can be chosen
between two consecutive integers, giving an overall 2k

nodes for one ‘cell’ of the mesh. Unfortunately, such an
analogy does not exist for higher dimensional triangular
or its dual hexagonal tessellations, as shown in [7]. It is
well known that the space can only be filled with
hypercubes, but not with regular tetrahedrons. Never-
theless, it has been shown in [7] that there exist k þ 1
vectors X1;X2;y;Xk;Xkþ1 in a k-dimensional (k-D)
space such that X1 þ X2 þ?þ Xk þ Xkþ1 ¼ 0 and the
dot product X iX j ¼ �1=k for any pair for distinct co-
ordinates i and j (in other words, these k þ 1 vectors are
fully symmetrical in space). For instance, in three
dimensions, these vectors are those perpendicular to
the tetrahedron faces, and their exact values are listed in
[7]. The use of these k þ 1 vectors is the only common
idea between this article and [7]. Subsequent details
differ.
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Carle and Myoupo [5] defined a 3-D hexagonal graph
as a generalization of the hexagonal network in a plane.
Carle [4] further generalized the network for higher
dimensions. Each node in a k-D hexagonal graph is
defined in [5,4] as the node with integer co-ordinates
(x1;y;xk). The network has two kinds of edges. Two
nodes (x1;y; xk) and (x0

1;y; x0
k) are connected by an

edge if their addresses differ by one in exactly one
direction, that is, |x1 � x0

1|+?+|xk � x0
k|=1. Therefore,

higher dimensional meshes are sub-graphs of higher
dimensional hexagons, as defined in [5,4] (with network
borders being defined in a different manner). Some
diagonal edges are added to the network as follows. Two
nodes are connected by an edge when there exist exactly
two co-ordinates i and j such that ðxi � x0

iÞðxj � x0
jÞ ¼ 1

(the product is otherwise equal to 0). Therefore, each
node has kðk � 1Þ=2 diagonal edges. The overall number
of edges at each node (that is, the network degree) is
therefore quadratic with the network dimension, as
opposed to being linear for higher dimensional meshes
and honeycombs. This is a significant drawback for the
proposed generalization [4,5]. Moreover, no formula
for the distance between two nodes in the network
has been given in [4,5], and the routing scheme offered is
not shown to follow the shortest path between two
nodes. Clearly, an adapted routing scheme should
follow the shortest path between any two nodes.
The addressing scheme proposed in [4,5] for the
network is therefore sophisticated, has an excessive
degree, and is discouraging for further study of the
network.
In this paper, we suggest a variation for the general-

ization of the plane hexagonal graph to a higher
dimensional hexagonal network. This new generaliza-
tion presents a linear degree (more precisely, 2k þ 2) and
has a very simple addressing scheme, which leads to a
straightforward formula for the distance between two
nodes and to a straightforward routing algorithm, not
only for one shortest path but also for all the shortest
paths. Further, it allows to count and list the number of
shortest paths between two nodes and to count the
number of nodes at a given distance from a given node
(that is, to find a closed formula for the surface area of
the network). Thus, this new generalization will be
shown to be a viable alternative to the well-known
higher dimensional mesh connected computer,
and the higher dimensional honeycomb network.
We will also show embeddings and analogies between
the two networks, and a simple broadcasting
algorithm for the hexagonal networks. The proposed
network can be physically implemented with existing
technology like any other interconnection network,
with processors replacing nodes and communication
links added between processors according to the
graph definition of higher dimensional hexagonal
network.
2. An addressing scheme for higher dimensional

hexagonal networks

The goal of this paper is to describe a higher
dimensional hexagonal network as a generalization of
2-D one, preserving desirable properties such as low
diameter, small degree and symmetries. We observe
that, starting from an origin node, all nodes of a 2-D
hexagonal network are obtained by adding unit size
vectors along three symmetrically positioned directions
in the plane. We will therefore extend this construction
to k-D space. Starting from the origin, unit size vectors
will be added and will lead to new nodes along k þ 1
symmetrically positioned vectors (in both positive or
negative orientations along these vectors), so that each
node has at most 2k þ 2 neighbors. Two nodes are
neighbors in such graph if and only if they differ by one
of such 2k þ 2 unit size vectors (in vector sense). While
such construction is intuitively clear, the addressing of
nodes in such networks is not obvious. Our main
contribution is to propose a co-ordinate system that can
be used to assign ids to the nodes in a higher
dimensional hexagonal network. We will then show
that the distance between any two nodes can be
computed easily if the proposed node id assignment
scheme is utilized. Let X1;X2;y;Xk;Xkþ1 be k þ 1
(unit) vectors in a k-D space such that X1 þ X2 þ?þ
Xk þ Xkþ1 ¼ 0 (the dot product property is not needed
in the sequel). The nodes in a k-D hexagonal network
can be defined as follows.

Definition 1. Choose any node as the origin and assign
(0; 0;y; 0) (k þ 1 zeros) as its address. For any other
node A on the network, if there is a path from the origin
to node A, and the path has altogether |ai| units of
vector sign(ai)X i (that is, X i for ai 40 and –X i

otherwise), 1pipk þ 1; then an address for node A is
ða1;y; akþ1Þ ¼ a1x1 þ?þ Akþ1Xkþ1:

Clearly, more than one ðk þ 1Þ-tuple point corre-
sponds to the same node. For example, in Fig. 1,
(�1,0,0)=(0,1,1) since –i=j+k and thus the two
paths, the direct one, and using the two other sides
of the equilateral triangle, end in the same point.
In general, we have ða1;y; akþ1Þ ¼ ða0

1;y; a0
kþ1Þ

3a1X1 þ?þ akþ1Xkþ1 ¼ a0
1X1 þ?þ a0

kþ1Xkþ1: In
particular, if (a1;y; akþ1)=(a0

1;y; a0
kþ1), then there

exists an integer r such that a0
i ¼ ai þ r; 1pipk þ 1:

Combining those two facts, we have the following. If
(a1;y; akþ1) is an address for node A, then all
possible addresses for node A are of the form
(a1 þ r;y; akþ1 þ r) for any integer r. Starting from
the nonunique addressing, we shall now find a way to
arrive at a unique node address. We will first define the
shortest path form for the address, and then will
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define the distinguished shortest path form for the
node address.

Definition 2. An address (a1;y; akþ1) for node A is of
the shortest path form if there is a path from the origin
to node A, consisting of |ai| units of either vector X i; (for
ai40) or vector �X i (for aio0), 1pipk þ 1; and the
path has the shortest possible length.

Corollary 1. The distance between two nodes A and B,

isja1j þ?þ jakþ1j; where B � A ¼ ða1;y; akþ1Þ is in

the shortest path form. Therefore the shortest path form

ða1;y; akþ1Þ minimizes ja1j þ?þ jakþ1j:

We shall now investigate the uniqueness of the
shortest path form. Let np, nn, and nz denote the
number of positive, negative and zero co-ordinates in a
shortest path form ða1;y; akþ1Þ; respectively. Clearly
np þ nn þ nz ¼ k þ 1:

Theorem 1. If k is an even number then ða1;y; akþ1Þ is in

a shortest path form if and only if nzX1, nppk=2,

nnpk=2. The shortest path form is also the unique

shortest path form. The number of shortest paths

between two nodes A and B with B � A ¼ ða1;y; akþ1Þ
in the shortest path form is ðja1j þ?þ jakþ1jÞ!=
ðja1j!yjakþ1j!Þ:

Proof. We will prove the theorem by contradiction.
Assume that ða1;y; akþ1Þ is in a shortest path form, and
np4k=2: Without loss of generality, we assume that
ai40; 1pipnp: Since a1X1 þ?þ akþ1Xkþ1 ¼ a1X1þ
?þ akþ1Xkþ1–ðX1 þ?þ Xkþ1Þ ¼ ða1 � 1ÞX1 þ?þ
ðakþ1 � 1ÞXkþ1; ða1 � 1;y; akþ1 � 1Þ is another address
for node A. The length of the path corresponding to
(a1 � 1;y; akþ1 � 1) is ja1 � 1j þ?þ jakþ1 � 1jp
ja1j�1þ?þ janpj � 1þ janpþ1j þ 1þ?þ jakþ1j þ 1¼
ja1j þ?þ jakþ1j�np þ ðk þ 1� npÞoja1j þ?þ jakþ1j
since k þ 1o2np: It means that the path corresponding
to (a1 � 1;y; akþ1 � 1) is shorter than the shortest path,
a contradiction. Therefore we proved that nppk=2; and
similarly nnpk=2: Then nz ¼ k þ 1� np � nnXk þ 1�
2k=2 ¼ 1: Assume now that nzX1; nppk=2; nnpk=2 is
satisfied. Then for node (a1 þ r;y; akþ1 þ r) and r40
(the proof for ro0 is similar) we get ja1 þ rjþ ?þ
jakþ1 þ rjXja1j þ?þjakþ1j þ rðnp þ nz�nnÞ4ja1j þ?
þjakþ1j(since np þ nz � nn ¼ k þ 1� 2nn40), thus (a1þ
r;y; akþ1 þ r) is not in the shortest path form. &

However, the shortest path form is not always unique
for k odd. For example, for k ¼ 3; (4,4,0,0)=(3,3,
�1,�1)=(2,2,�2,�2)=(1,1,�3,�3)=(0,0,�4,�4), and
all these representations have the shortest
path length 8. Using similar arguments as in the
proof of Theorem 1, we can prove the following
corollaries.
Corollary 2. A node address ða1;y; akþ1Þ is in the

shortest path form if and only if nppðk þ 1Þ=2 and

nnpðk þ 1Þ=2. This is valid for both cases of k being an

odd or an even number.

Corollary 3. If k is an odd number then a shortest path

form ða1;y; akþ1Þ is unique if and only if nz4jnp � nnj.

We shall now define the median for an address
ða1;y; akþ1Þ (not necessarily in the shortest path form).
Let ðb1;y; bkþ1Þ be the permutation of elements
ða1;y; akþ1Þ in sorted order, that is b1p?pbkþ1:
The median is any integer m which satisfies
bðkþ1Þ=2pmpbðkþ1Þ=2þ1: If ða1;y; akþ1Þ is in the shortest
path form then an alternative definition of median can
be given as follows. Let mn and mp be the maximal
negative and minimal positive elements of sequence
ða1;y; akþ1Þ; respectively; if there are less than ðk þ
1Þ=2 negative (positive) elements then mn (mp, respec-
tively) is set to 0. The median is any integer m which
satisfies mnpmpmp.

Corollary 4. If ða1;y; akþ1Þ is an address for node A

then ða1 � m;y; akþ1 � mÞ is an address for node A in a

shortest path form for any median m.

Corollary 5. The number of shortest paths between two

nodes A and B with B � A ¼ ða1;y; akþ1Þ in a shortest

path form is
Pmp

m¼mnðja1 � mj þ?þ jakþ1 � mjÞ!=ðja1 �
mj!yjakþ1 � mj!Þ:

Theorem 2. The address of each node can be uniquely
represented in the distinguished shortest path form

ða1;y; akþ1Þ; where nppIðk þ 1Þ=2m; nnpIk=2m;
and nzX1:

Proof. For k even the theorem is equivalent to Theorem
1. If k is odd then Corollary 4 can be applied for m=mn,
leading to a (unique) distinguished shortest path
representation. &
3. Routing in higher dimensional hexagonal networks

We shall now describe a corresponding routing
algorithm from a source S to a destination D, where
D � S ¼ ða1;y; akþ1Þ is in a shortest path form. The
algorithm reduces the path length at each step. The
routing algorithm is quite simple and can be described as
follows:

Algorithm route(S;D) (�D � S ¼ ða1;y; akþ1Þ is in a
shortest path form �) {

For i ¼ 1 to k þ 1 do

For j ¼ 1 to |ai| do Send message |ai| times in
direction sign(ai) X i }
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able 1

urface area of a k-D hexagonal network at distance n

n

1 2 3 4 5 6 7

2 2 2 2 2 2 2

6 12 18 24 30 36 42

8 26 56 98 152 218 296

10 50 150 340 650 1110 1750

12 72 272 762 1752 3512 6372

14 98 462 1596 4410 10,374 21,658

16 128 680 2722 8679 23,331 55,073

18 162 978 4482 16,470 50,718 135,702

20 200 1340 6800 27,752 94,940 281,360
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The algorithm may be easily modified to offer
flexibility in selecting one of the possible shortest paths,
whose number is given in Corollary 5. At each step, the
message can be sent along any edge that will shorten the
destination distance. These edges are easy to detect.
Such flexible routing is important in case of congestion
in a corresponding interconnection network. The level
of congestion at each node corresponds to the amount
of traffic at that node (for instance, the queue length in
interconnection networks). Various heuristics for select-
ing a path based on the network conditions can be
derived from the analysis of congestion, but this is
beyond the scope of this paper. Note that the algorithm
assumes the availability of intermediate nodes in the
network. Given some boundary conditions for the
nodes, the algorithm might need to be modified to
avoid missing nodes.
4. The surface area of higher dimensional hexagonal

networks

We shall now count the number of nodes at a given
distance n from the origin node (0,y,0). Because of the
symmetry, the same number is obtained from any node,
subject to the network border conditions that can reduce
the count. The surface area at distance n is equal to the
number of nodes ða1;y; akþ1Þ in the unique shortest
path representation which satisfy ja1j þ?þ jakþ1j ¼ n

(Corollary 1). Let Cðp; qÞ ¼ p!=ðq!ðp � qÞ!Þ be the
binomial coefficient. In order to make the expression
clearer, let np max ¼ minðk þ 1� nz;Iðk þ 1Þ=2mÞ and
np min ¼ maxð0;Iðk þ 3Þ=2m� nzÞ:

Theorem 3. The surface area of a k-D hexagonal network

at distance n is

Xk

nz¼1
fCðk þ 1; nzÞCðn � 1; k � nzÞ

�
Xnpmax

np¼npmin

Cðk þ 1� nz; npÞg:

Proof. The number of elements nz in sequence
ða1;y; akþ1Þ which are equal to zero can be between 1
and k, according to Theorem 2, and the count is
considered separately for each possible value of nz.
There are Cðk þ 1; nzÞ ways to choose nz zero positions
in vector ða1;y; akþ1Þ: The remaining elements in the
vector area0. Integer compositions of n into s parts are
representations of n as sums of s positive integers, called
parts; that is, n ¼ u1 þ?þ us; ui40; 1pips: It is
well-known that the number of such compositions is
Cðn � 1; s � 1Þ: In our case s ¼ k þ 1� nz: Each of
these nonzero parts can be either a positive or a negative
number, and the numbers np and nn of the positive and
T

S

k

1

2

3

4

5

6

7

8

9

negative numbers must be chosen in accordance to
Theorem 2. Since nn ¼ k þ 1� np � nz; it suffices to
find the bounds for np. It is bounded above by
both k þ 1� nz and Iðk þ 1Þ=2mÞ; thus its
maximum is npmax=min(k þ 1� nz;Iðk þ 1Þ=2m).
Since nnpIk=2m; it follows that np ¼ k þ 1� nz �
npXk þ 1� nz � Ik=2m ¼ Iðk þ 3Þ=2m� nz: It is also
bounded below by 0, therefore npmin=max(0;
Iðk þ 3Þ=2m� nz). Among k þ 1� nz nonzero parts,
np parts are selected to be positive, others are negative.
The theorem then follows. &

Table 1 gives the surface areas of k-D hexagonal
networks at distance n for small values of k and n. The
volume of the network can be then calculated as the
summation over distances up to n, applied on formula in
Theorem 3. The network can be bounded using the
maximum distance n from the origin as a criterion for a
node to belong to the network. The diameter of the
network is obviously 2n; which is the distance between
nodes (n; 0;y; 0) and (�n; 0;y; 0). The network degree
2k þ 2 and diameter 2n can be considered as a function
of the volume, and be compared with similar analysis
for the honeycomb and mesh connected computers, in
order to compare network costs. The closed formulas
for comparison seem difficult to obtain, so one can rely
on computer data to compare small size networks and
derive conclusions.
5. A border with better connectivity

A k-D hexagonal network can be defined with the
origin as a center and with all nodes up to certain
distance from the origin as part of the network.
However, using such border definitions, some nodes
have only one neighbor. For example, node (n; 0;y; 0)
is connected only to node (n � 1; 0;y; 0) (for k42). We
shall define now a ‘friendlier’ border condition. Let a k-
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Table 2

Volume of k-D hexagonal networks of size t

k t

1 2 3 4 5 6

1 3 5 7 9 11 13

2 13 37 73 121 181 253

3 39 185 511 1089 1991 3289

4 141 1141 4441 12,201 27,301 53,341

5 423 5705 31,087 109,809 300,311 693,433

6 1429 32,845 252,169 1.1E6 3.8E6 1.0E7

7 4254 163,361 1.7E6 1.0E7 4.2E7 1.3E8

8 13,981 911,845 1.4E7 1.0E8 5.2E8 2.0E9

9 41,898 4.5E6 9.6E7 9.3E8 5.7E9 2.6E10

1100 11-10 
000-1 001-1 

010-1 
100-1 

110-1 

101-1 011-1 
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D hexagonal network of size t be defined as the set of
nodes whose unique shortest path form (a1;y; akþ1)
satisfies jaijpt; 1pipk þ 1:

Theorem 4. The diameter of a k-D hexagonal network of

size t is 4tIðk þ 1Þ=2m:

Proof. The distance between nodes (�t;y;�t; t;y; t)
and (t;y; t; �t;y;�t) (with Iðk þ 1Þ=2m positive
and negative parts in each, and with an additional
component equal to 0 at the end of both for k

even) is 4tIðk þ 1Þ=2m: The distance cannot be
larger since for the k even X1 part in both vectors
must be 0. &

Theorem 5. The number of nodes in a k-D hexagonal

network of size t is

1þ
Xk

nz¼1
fCðk þ 1; nzÞtkþ1�nz

Xnpmax

np¼npmin

Cðk þ 1� nz; npÞ:

Proof. The count is considered separately for each nz.
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Fig. 2. Three-dimensional hexagonal network of size 1.
There are Cðk þ 1; nzÞ ways to choose nz zero positions
in vector (a1;y; akþ1). Then 1pjaijpt for each remain-
ing nonzero part. There are tkþ1�nz such variations.
Next, np out of k þ 1� nz positions have positive
parts, and the remaining parts are negative. There are
Cðk þ 1� nz; npÞ such choices of np positions. Finally,
np is between npmin=max(0;Iðk þ 3Þ=2m� nz) and
npmax=min(k þ 1� nz;Iðk þ 1Þ=2m). &

Table 2 gives volumes of k-D hexagonal networks of
size t for small values of k and t. For comparison, note
that a similar volume for a k-D cube of size t is ð2t þ 1Þk:
When the volumes of hexagonal and cubic networks are
divided, for the same values of t and k, the ratio appears
to be around 2, and appears to be slowly increasing with
increasing values of t and k. This means that hexagonal
networks are approximately twice denser than cubic
networks.
As an example, for k ¼ 3 and t ¼ 1; the 39 nodes in

the 3-D hexagonal network of size 1 are the following:
(0,0,0,0), (0,0,0,1), (0,0,0,�1), (0,0,1,0), (0,0,�1,0),
(0,1,0,0), (0,�1,0,0), (1,0,0,0), (�1,0,0,0), (0,0,1,1),
(0,0,1,�1), (0,0,�1,1), (0,1,0,1), (0,1,0,�1), (0,�1,0,1),
(1,0,0,1), (1,0,0,�1), (�1,0,0,1), (0,1,1,0), (0,1,�1,0),
(0,�1,1,0), (1,0,1,0), (1,0,�1,0), (�1,0,1,0), (1,1,0,0),
(1,�1,0,0), (�1,1,0,0), (1,1,�1,0), (1,�1,1,0), (�1,1,1,0),
(1,1,0,�1), (1,�1,0,1), (�1,1,0,1), (1,0,1,�1), (1,0,�1,1),
(�1,0,1,1), (0,1,1,�1), (0,1,�1,1), (0,�1,1,1). Fig. 2
shows the network with all the edges (the figure is not
a projection of the corresponding 3-D object since the
real projection results in a dense graph with limited
clarity due to all the points being concentrated near each
other).
6. Embeddings between hexagonal and mesh networks

We will now elaborate on the similarity of hexagonal
and mesh connected networks, that is, networks based
on a triangular and a square tessellation, respectively.
First, observe that the degree of a k-D hexagonal
network is 2k þ 2; which is the same as degree of a
ðk þ 1Þ-D mesh connected computer. Let a ðk þ 1Þ-D
mesh connected computer of size t be defined as the set
of nodes (a1;y; akþ1) satisfying jaijpt; 1pipk þ 1:
The diameter of the network is 2ðk þ 1Þt; which is
the distance between two corner nodes (�t;y;�t)
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Fig. 3. Embedding of a k-D hexagonal network into a (k þ 1)-D mesh connected computer.
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and (t;y; t). On the other hand, the diameter of a
k-D hexagonal network of size t is 4tIðk þ 1Þ=2m
(Theorem 4). For k odd the diameters are the same,
while for k even they are lower than the diameter of the
corresponding mesh.
The mapping between the two networks is straight-

forward, since we use the same addressing scheme, even
the same border conditions (when a border with better
connectivity is used). The only difference is that the k-D
hexagonal network addresses have additional restric-
tions, according to Theorem 2. Therefore the number of
nodes in a k-D hexagonal network of size t is less than
the number of nodes in a (k þ 1)-D mesh connected
computer of size t. Moreover, the distances in a
hexagonal network are preserved or reduced, since some
nodes that are not neighbors in the mesh can become
neighbors in hexagonal network (e.g. nodes (0,0,1) and
(0,�1,0)). The mapping is illustrated in Fig. 3, which
shows 27 nodes of a 3-D mesh of size 1, with nodes and
edges belonging to the corresponding 2-D hexagonal
network of size 1 marked in bold. The 13 nodes of the
later network are also drawn separately, using bold
edges. Note that the remaining nodes of the mesh
network have also their maps, in a hexagonal network
either of size t, or size 2t: For example, in Fig. 3, the full
projection of a mesh of size 3 is a hexagonal networks
with all nodes at a distance of at most three from the
origin (additional edges are marked in dashed lines in
Fig. 3, and there are six new nodes where these edges
originate from). Several nodes of the mesh can map into
the same node of hexagonal network (e.g. nodes (1,1,1),
(0,0,0) and (�1,�1,�1) all map to (0,0,0)). The six
corner nodes of the mesh network are mapped into six
nodes outside of size 1 hexagonal network (connected by
dashed lines to the rest of the network).
The described mapping leads to two embeddings

between the two networks. The embedding from a
(k þ 1)-D mesh of size t to a k-D hexagonal network of
size 2t has an optimal dilation (where dilation is the
maximum ratio of distances between two nodes in the
host network and their corresponding nodes in the guest
network). Neighboring nodes in the hexagonal network
may either remain neighbors in the mesh, or be at a
distance k (thus the dilation in this direction is not
optimal). The later case appears when a node, after
increasing one co-ordinate by 1, does not satisfy the
criterion in Theorem 2 (this may happen only when a
zero co-ordinate becomes 1). It can be shown that, when
one subsequently reduces all co-ordinates by 1, the new
address satisfies the criterion, and therefore the k co-
ordinates of the two neighboring nodes in the hexagonal
network differ by 1, and one co-ordinate is the same,
leading to a distance k between the two nodes in the
mesh. For example, node (0,0,1) has a neighbor (1,0,1)
in the mesh, and later is addressed as (0,�1,0) in the
hexagonal network, with a distance k ¼ 2 between the
two nodes (0,0,1) and (0,�1,0) within the mesh network.
The case of reducing one co-ordinate by one is
symmetric to this one.
7. Broadcasting in hexagonal networks

The mapping between mesh and hexagonal networks
may be used to describe some basic data communication
schemes for a hexagonal network, following an analo-
gous design for the mesh-connected computers. As an
illustration, we will design a broadcasting algorithm. In
a broadcasting task, one node sends the same message to
all the nodes in the network. In an efficient broadcasting
algorithm, each node receives the message exactly once.
In a mesh-connected computer, broadcasting is

performed by ‘spreading’ the information within nodes
sharing the same co-ordinates as origin node except the
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first co-ordinate, then all these flood nodes sharing all
co-ordinates except the first two using the second
dimension for distribution, etc. The same algorithm
can be applied for hexagonal networks, with several
changes. First, the last co-ordinate in a hexagonal
addressing is not needed. Next, the borders of a
hexagonal network require some changes for the
‘spreading’ algorithms in each dimension. Let us
illustrate a broadcasting algorithm on the hexagonal
network in Fig. 3. Suppose that node (0,1,0) is the
source node. The message is first broadcasted along the
first dimension, and nodes (–1,1,0), (0,0,�1)=(1,1,0),
(1,0,�1)=(2,1,0) receive it. Then each of these nodes
forwards the message in a similar way using the second
co-ordinate. All nodes except (�2,0,0),
(�1,0,1)=(�2,�1,0), and (0,0,2)=(�2,�2,0) receive
the message. These nodes did not receive the message
since node (�2,1,0) that was ‘responsible’ for them after
the first dimension is outside of the borders of the
hexagonal network. In order to fix this problem,
each message should carry the direction and distance
‘traveled’ in each dimension, so that the path along
each dimension can be extended when new nodes are
discovered. In the example discussed, node (�1,0,0)
discovers that its neighbor, node (�2,0,0) did not
receive the message since it was not previously
extended beyond –1 in the first dimension. Node
(�2,0,0), upon receiving the message, forwards it to
two other nodes, (�1,0,1) and (0,0,2), to complete the
broadcast.
In order to simplify the algorithm description, let us

label each link at a given node A as follows. If B � A ¼
ð0;y; 0; 1; 0;y; 0Þ (the ith co-ordinate is equal to one)
then B is a neighbor on link i. If B � A ¼
ð0;y; 0;�1; 0;y; 0Þ (the ith co-ordinate is equal to
�1) then B is a neighbor on link �i. In addition to the
message, each node also receives an integer vector
j=(j1; j2;y; jk) which indicates the borders met
by the copy of the message on its way to a given
node. In the example considered, node (�1,1,0) recog-
nizes that it is a border node along the first dimension,
and will forward vector (�1,0,0) where –1 refers to the
border met on link �1. Similarly, node (1,0,�1) will
forward vector (1,0,0). The vector elements are always 0,
1 or –1. The algorithm can be formally described as
follows.
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8. Conclusion
It is an interesting open problem to extend our
addressing and routing schemes and define a higher
dimensional hexagonal tori as an alternative to the
popular t-ary k-cubes. A similar open problem is to
define a higher dimensional honeycomb tori, extending
the work done in [7].
There are a number of topological properties and data

communication algorithms that need to be investigated
for the proposed network before a final conclusion can
be made. This paper certainly provides a promising
starting point. In particular, the prefix computation, the
Hamiltonian path and the disjoint path problems, the
embeddings with other networks, the bisection width and
the fault tolerance, among others. Given some border
conditions, it is also interesting to design formulas for
ranking and unranking the nodes, that is matching the
introduced addresses with the addresses 1; 2;y; n; where
n is the number of nodes in the network.
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