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Abstract: Measuring ellipticity is an important area of computer vision 
systems. Most existing ellipticity measures are area based and cannot be easily 
applied to point sets such as extracted edges from real world images. We are 
interested in ellipse fitting and ellipticity measures which rely exclusively on 
shape boundary points which are practical in computer vision. They should also 
be calculated very quickly, be invariant to rotation, scaling and translation. 
Direct ellipse fitting methods are guaranteed to specifically return an ellipse as 
the fit rather than any conic. We argue that the only existing direct ellipse fit 
method does not work properly and propose a new simple scheme.  It will 
determine the optimal location of the foci of the fitted ellipse along the 
orientation line (symmetrically with respect to the shape center) such that it 
minimizes the variance of sums of distances of points to the foci. We next 
propose a novel way of measuring the accuracy of ellipse fits against the 
original point set.  The evaluation of fits proceeds by our novel ellipticity 
measure which transforms the point data into polar representation where the 
radius is equal to the sum of distances from the point to both foci, and the polar 
angle is equal to the one the original point makes with the center relative to the 
x-axis. The linearity of the polar representation will correspond to the quality of 
the ellipse fit for the original data.  We also propose an ellipticity measure 
based on the average ratio of distances to the ellipse and to its center. The 
choice of center for each shape impacts the overall ellipticity measure. We 
discuss two ways of determining the center of the shape. The measures are 
tested on a set of shapes. The proposed algorithms work well on both open and 
closed curves.  
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1   Introduction 

Classifying a shape as a certain primitive is important in image processing 
applications and computer vision systems. Popular shape measures such as 
elongation, convexity and orientation exist in literature. Like other measures for 
primitive geometric shapes, the measure of ellipticity and ellipse fitting are motivated 
by real world image processing problems. Ellipticity is common in nature and 
industry, and finding a way of identifying it can be important to both. Applications of 
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ellipse identification are found in agricultural and medical imaging systems for 
identifying certain grains, onions, watermelons, cells, and even human faces. In this 
article we study two related problems: ellipse fitting and measuring shape ellipticity. 
Finding an ellipse that best represents a set of points is called ellipse fitting. We are 
also interested in measuring how elliptical a finite set of points is. 

The two main approaches to ellipse fitting and measuring ellipticity are shape 
(boundary) based and area based. Shape based approaches consider only the points on 
the boundary or perimeter of a shape, while area based ones take into consideration all 
of the pixels within a closed shape. One of the main advantages of our algorithm is 
that it works on both open and closed curves. Most other ellipticity measures found in 
literature are linked to exclusively closed curves, because they are area based. Our 
algorithms have image processing applications in mind which deal with pixels as 
points, but also accept real numbers as input. In analyzing various algorithms, we 
restrict ourselves to the following criteria. Ellipticity values are assigned to sets of 
points and these values shall be numbers in the range [0, 1]. The ellipticity measure 
equals 1 if and only if the shape is an ellipse, and equals 0 when the shape is highly 
non-elliptical. A shape’s ellipticity value should be invariant under similarity 
transformations of the shape, such as scaling, rotation and translation. Ellipticity 
values should also be computed by a simple and fast shape based algorithm. As in 
existing literature, the points in the set are not ordered; that is, ellipse fits and 
ellipticity measures do not depend on the ordering of points in the data set or along 
the boundary. Ellipse fitting has been widely studied in literature. Voss and Süße [16] 
described an area and moments based method of fitting geometric primitives. Rosin 
[8, 9] discussed various ellipse fitting methods and various distance measures of 
points in data sets from the corresponding ellipse fit [11]. We will discuss a shape 
sampling based method [9] by Rosin because his papers indicate it as the ultimate 
selection. Fitzgibbon, Pilu and Fisher [4] introduced the only existing direct fitting 
ellipse method which is heavily based on the work of Bookstein [1]. We will discuss 
the performance of this method in section 2.  

Various ellipticity measures were proposed in literature. An ellipse fit is a 
prerequisite for some of them. These include DFT and the shape based measure by 
Proffit [6], the set operations area based method [5], and the Euclidean ellipticity 
shape based and orthogonal hyperbolae area based measures by Rosin [10]. Other 
measures are not based on a prior ellipse fit, such as the elliptic variance shape based 
method [6I], and the area and moment based method [10]. Here, we will propose and 
analyze an algorithm that fits an ellipse to a set of points, and one that finds an 
ellipticity value for the fitted ellipse. The ellipticity measure can be used to compare 
quality of several ellipse fits. The ellipse fit is done by first choosing a shape center 
and finding the orientation line of the shape. The best ellipse fit is chosen by 
determining the location of the foci of this fit along the orientation line in opposite 
directions of the shape center.  The best locations of the foci are those that minimize 
the variance of sums of distances of points to the foci. Our new ellipticity measure is 
based on a measure of linearity used in [14]. Any one of the six linearity measures in 
[14] can be used as a base of our ellipticity algorithm since the input set of points to 
our algorithm was transformed from planar representation to polar representation, 
where highly elliptical input point sets become highly linear in the new 
representation. This transformation is done by using the center of the shape as the 
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origin in the polar representation, and by maintaining the angle each point forms with 
the center. The radius in polar form is modified such that it equals the sum of 
distances from the point to both foci. The choice of center of each shape influences its 
overall ellipticity value. The center of each shape is traditionally seen as its center of 
gravity. We propose to also use a true center (Xtc, Ytc) of a shape, defined as the center 
of a circle C that best fits the shape to C. It is determined by sampling k triplets of 
points from the point set, and finding their true centers. The median center value of 
the k samples is taken as the shape’s true center. Our algorithms were tested in several 
ways. The new foci distance variance fit method is compared to the sampling [9] and 
EllipVos [16] methods using our new polar linearity and average distance ratio 
measures of ellipticity. The two fit measures from [5, 10], are compared with our two 
measures on a set of open or closed shapes, as appropriate.  

Overall in this paper, we propose two novel algorithms, which when combined fit 
and assign ellipticity values to sets of planar 2D points. The literature review is given 
in section 2. The new measures are presented in section 3. Chapter 4 is reserved for 
the presentation of our test set along with a general discussion of our results.  

2   Literature Review 

2.1   Central Moments and Orientation of a Point Set 

The central moment of order pq of a set of points Q is defined as:  

( ) ( )q
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p
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where S is the number of points in the set Q. The center of gravity (xc, yc) is the 
average value of each coordinate in set Q, and is determined as follows:  
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where (xi, yi), 1≤i≤S, are real coordinates of points from Q. The angle of orientation of 
the set of points Q is determined by [2]: 
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2.2   Ellipse Fitting by Sampling 

Rosin [9] described the least median of squares (LMedS) shape based approach to 
ellipse fitting. Several (k) minimal subsets (i.e. five points) of the data are selected at 
random and used to generate the ellipses through them. Only subsets that generate 
coherent results are considered. When enough minimal subsets have been acquired to 
satisfy a pre-determined error estimation threshold, the median value of the k subsets 
of each ellipse coefficient is taken to define the ellipse fit. This method is not 
guaranteed to return an ellipse.  
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2.3   Moment Based Ellipse Fitting 

Voss and Süße [16] described a moments and area based method of fitting geometric 
primitives by ellipses. The data is normalized into a unique canonical frame (a circle 
with specific radius for the case of ellipse fitting), by applying an affine transform. 
Given input points, they first find the centroid, and translate all points so that the new 
centroid is at the origin. Then μ01 = 0 and μ10 = 0 for the translated shape. They then 
apply an x-sheering transform which maps (x, y) to (x’, y’) as follows: x’=x+βy, y’=y. 
The goal is to obtain an elliptical shape with horizontal and vertical axis. For this 
position, the new moment value of m’11 is 0 because such an ellipse is an odd 
function. This means that  
  

( )∫∫ =+
S

dydxyyx 0β , which decides 0211 μμβ −= ,  

where μ11 and μ02 are taken before the transform [12]. The elliptical shape should now 
be scaled to obtain a circular shape with new unit moments M02 = M20 = 1. The circle 
with such unit value moments has radius r = (4/π)1/4 [12]. The new transformation is 
x”=αx’, y”=δy’.  
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and similarly 1 = M02 = αδ 3μ’02. Moments μ’02 and μ’20 of the shape are calculated 
after x-shearing and before scaling. Multiplication gives (αδ)4μ’02 μ’20, which leads to 
α = (μ’02/ μ’20

3)1/8, δ = (μ’20/μ’02
3)1/8. This decides the new transform, which brings the 

data to a circular form with a unique canonical frame. 
Applying an inverse transforms to the circle will result in getting the elliptical fit 

for the original data. A circle with radius r is scaled back to an ellipse with axes a = 
r/α, b = r/δ. The equation of that ellipse is x’2/a2+y’2/b2 = 1. After inverse x-shearing, 
the equation of the original ellipse is (x+βy)2/a2+y2/b2 = 1. 

2.4   Direct Least Square Fitting 

Fitzgibbon, Pilu, Fisher [4] described a direct method for least square fitting of 
ellipses. The method is based on the method by Bookstein [1] for fitting conic 
sections to scattered data. The method in [4] is ellipse-specific, so it always returns an 
ellipse.  

The equation a’x = ax2+bxy+cy2+dx+ey+f = 0, where a=[a b c d e f ]T and x = [x2 
xy y2 x y 1]T describes an arbitrary conic section a. This conic section is an ellipse if 
b2-4ac<0.  

Given a point (xi, yi), its algebraic distance to conic a from a point to a candidate 
ellipse is a·.xi where xi = [xi

2 xiyi yi
2 xi yi 1]T. The method [1] minimizes the sum of 

squared algebraic distances ( )
2

1

N
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G

=
= ⋅∑ ia x , where xi are the input points.  

Let D= [x1 x2 … xn]T, and S=DTD (called the scatter matrix, a symmetric 6x6 
matrix). Then G = (Da)T(Da) = aTDTDa = aTSa. Therefore the problem is to minimize 
G = aTSa. However, a constraint on coefficients needs to be placed, since otherwise 
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the solution is not unique. Bookstein [1] suggested to use constraint a2 + b2/2+ c2 =2. 
We follow here the description and solution of [1] since [4] only discussed the 
difference from that algorithm. This solution is generally applicable for any constraint 
of the form aTCa = constant. The main contribution of [4] is to replace the diagonal 
constraint matrix C by a matrix which corresponds to the condition 4ac-b2=1, which 
then always produces an ellipse. Such a matrix C satisfies aTCa = 1 and has all zeros 
except C13 = C31 = 2, C22 = -1. Let aT = (a1

T | a2
T) = [a b c | d e f ]. Let  S be 

decomposed into four blocks, where S11, S12=S21
T and S22 are 3x3 matrices. Then G= 

aTSa = a1
TS11 a1 + 2a1

TS12 a2 + a2
TS22 a2. The constraint is on a1, not on a2. Assuming 

a1 is fixed, the minimum for G is obtained when d(aTSa)/(da2) = 0. Using theorems of 
matrix calculus, this means that 2a1

TS12 + 2a2
TS22 = 0, or a2

T = -a1
TS12S22

-1. Then G = 
a1

TS11 a1 + a1
TS12 a2=a1

T(S1 1-S12S22
-1S21)a1= a1

TS1 a1, S1 = S11 -S12S22
-1S21. The 

problem now is to minimize a1
TS1a1 subject to a1

TC’a1=1, where C’ is the top 3x3 
sub-matrix from C (nonzero elements are C’13=C’31=2, C’22=-1).  

The Lagrange multiplier λ is introduced, to minimize a1
TS1 a1 -λa1

TC’a1. The 
derivative with respect to a1

T implies 2S1 a1 - 2λC’a1 = 0. λ is a relative eigenvalue of 
S1 with respect to C’, or a solution to |S1 -λC’|=0, and a1 is the corresponding 
eigenvector. The determinant |S1 - λC’|=0 is a cubic polynomial in λ. The 
eigenvectors for each real solution λ are obtained from (S1 -λC’)a1=0. Usually the 
best solution corresponds to the smallest λ [1]. Let H=S1 -λC’ and u = (a b c)T be a 
solution of this homogeneous 3x3 system Hu=0 (one can fix c=1). Then μu is also a 
solution for any μ, and a1 = μu satisfies constraint a1

TC’a1=1. Thus μ2uTC’u=1 and 
μ=(1/(uTC’u))1/2. The conic we looked for is μu = (a b c)T while a2

T=(d e f) is 
obtained from a2

T = -(μu)TS12S22
-1. 

It can be observed, however, that scaling input data D leads to the scaling of the 
matrices S and S1 without changing constraint C’ and therefore changes the cubic 
polynomial |S1 -λC’|=0. This will change the claimed optimal values for λ and a1, as 
confirmed by our implementation, without ever producing a visually good fit. We 
believe that the optimal fit should be scalable and therefore conclude that the method 
[1, 4] does not work. 

2.5   DFT Based Ellipticity Measure 

Proffitt [6] described a shape based approach for measuring ellipticity based on the 
discrete Fourier transform (DFT). An ellipse is fitted to the shape by centering it on 
the shape’s centroid. The ellipse is then scaled such that its mean square of the lengths 
of the lines from the centroid to the boundary points matches the shape’s. Let u[j] = 

a[j] + ib[j], i= 1− , and v[j] = x[j] + iy[j] be the corresponding points on the ellipse 
and the shape boundary, with the line between them passing through the centroid. 

Then the ellipticity measure D [6] (not normalized to [0, 1]) is [ ] [ ]( )22

1

1

2

N

j
D u j v j

N =
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Note that (u[j] – v[j])2 = (a[j]-x[j])2 + (b[j] – y[j])2 is the Euclidean distance.  

2.6   Area Comparison to Measure Ellipse Fit 

Koprnicky, Ahmed, and Kamel [5] defined ellipticity measures based on comparing 
the areas of shape S, the area of its ellipse fit R, and the areas of set differences S\R 
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and R\S between the two. The measure that is closest to our criteria is 
(area(S\R)+area(R\S))/(area(S∪R). The authors do not elaborate on how to determine 
the best ellipse fit. This measure however might produce results that are outside of the 
interval [0, 1] when the ellipse fit is much bigger that the shape it is trying to fit. We 
therefore modified their method to measure ellipticity via area(S∩R) / area(S∪R). 

2.7   Moment Based Ellipticity Measures 

An area based ellipticity measure of a fit is obtained by comparing the differences 
between the central moments uij and u’ij of the shape and the corresponding ellipse fit 
[10, 13]. The measure is 

( )∑ ≤+

=
−+ 4

0,

2'1

1
ji

ji ijij μμ
. 

This method relies on normalizing uij coefficients, normally gives number close  
to 0, and can be used to rank shapes.  Rosin [10] defined another moment based 
ellipticity measure as follows. Since any ellipse can be obtained by applying an affine 
transform to a circle, the simplest affine moment invariant of the circle can be used to 
characterize ellipses. It is defined as I = (μ20μ02-μ11

2)/μ00
4, where μpq are central 

moments. The moment for the unit radius circle is Ic = 1/(16π2). Thus I is measured 
for a given shape, and the measure of ellipticity of that shape in [10] is: E = 16π2I if I 
≤ 1/(16π2), or 1/(16π2I) otherwise. 

2.8   Elliptic Variance Based Ellipticity Measure 

Peura and Iivarinen [7] described an ‘elliptic variance’ which they used to measure 
ellipticity based on shape perimeters. The center of gravity u = (u1, u2)

T and the 
covariance C of N data points pi = (xi, yi)

T are calculated. Covariance is a 2x2 matrix 
and is calculated by the following formula: 
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Rosin [10] modified it to get a measure in [0, 1] as follows: PI = 1/(1+EVAR). He 
observed that EVAR suffers from the same problems as many distance approximations 
used for ellipse fitting. In particular, similar to standard algebraic distance, it exhibits 
a curvature bias (distances near the pointed ends of the ellipse are underestimated 
relative to distances at the flatter sections). This leads to irregularities at the ends 
having less of an effect than at the sides. However, it is not prone to the asymmetry 
between distances inside and outside the fitted ellipse. 

 



 Direct Ellipse Fitting and Measuring Based on Shape Boundaries 227 

2.9   Orthogonal Hyperbolae Distance and Ellipticity Measure 

Rosin described a number of metrics for calculating the approximate error of each 
point, which represents the distance the point deviates from the fit [8, 11]. The true 
point error – the distance from the point along the line normal to the ellipse, involves 
solving a quartic equation. Rosin recommended [10] using the method that 
approximates the normal distance to an ellipse by the distance to the intersection with 
the confocal orthogonal hyperbolae passing through the point [8]. The ellipse fit error 
is then robustly and accurately determined by the summed errors of the ellipse fit as 

1

N

ii
SE d

=
=∑ , where di are the orthogonal hyperbolae based distance approximations [8] 

and N is the number of points to fit. Rosin [10] then proposed the following area 
based ellipticity measure: EE=(1+SE/(N A ))-1 (A is the area of given shape). 

2.10   Detecting Elliptical Shapes 

[15] described a variety of shape measures, applying them as shape descriptors of 
saccular otoliths. They list a number of shape measures from literature for measuring 
aspect ratio (elongation), compactness, convexity, eccentricity, rectangularity, 
ellipticity, circularity [6], triangularity [16], convexity, intrusiveness, protrusiveness, 
and several further measures. [3, 17] consider the problem of detecting ellipses, but 
do not measure ellipticity in the process. David [3] studied the problem of detecting 
cereal grains considering them as ellipses with aspect ratios (elongation) close to 2:1. 
They detect ellipses based on the property that the line passing through the centers of 
two horizontal chords also passes through the center of ellipse. A Hough transform 
was applied to handle some irregularities when grains touch each other. 

Zhang and Liu [17] described an ellipse detector that may be used for real-time 
face detection. They first extract edges from the image using a robust edge detector. 
The center of an ellipse is detected by intersecting two lines that pass through the 
intersection of tangent lines and the midpoint of the corresponding chord. The 
parameter space of the Hough transform is decomposed to achieve computational 
efficiency. 

2.11   Measuring Linearity 

Stojmenovic, Nayak and Zunic [14] proposed 6 linearity measurements for finite, 
planar point sets. Their measures are quickly calculated and are invariant to scale, 
translation or rotation. All of their methods give linearity estimates in the range [0, 1] 
after some normalization. Their Average Orientations measure takes k random pairs 
of points along the curve. It finds their slopes (m), and finds the normals to their 
slopes (-m, 1). These normals are averaged out, and the resulting normal (A, B) is 
deemed to be the normal to the orientation of the curve. The averaging is done 
separately for each vector coordinate. The measure of linearity is defined 
as 22 BA + . The Eccentricity measure is determined by first finding the center of 
gravity of the set of points (Xc, Yc). All of the points are translated by (-Xc, -Yc) so that 
the center of gravity is (0, 0). The linearity is determined to be 
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where μ11, μ02, and μ20 are the second order moments of the shape. The triangle 
heights linearity measure is found by first taking k triplets of random points from the 
set and computing the heights h to the longest side of the triangles that the triplets 
form. This h value is divided by the longest side c of the triangle to normalize the 
measure. This value is called hc. We use the average of these k hc values as a linearity 
measure of the set of points. The triangle perimeters method is similar to the previous 
one in the sense that k triplets of random points from the set of points are taken. Each 
triplet of points defines the vertices of a triangle. The three sides of the triangle are 
labelled a, b and c, where a≤b≤c. The linearity measure derived from these three sides 
is p = (2c-a-b)/c. The contour smoothness measure was formed by taking triplets of 
points, and averaging out their triangular areas. Each triplet of points produced a 
smoothness value in the form of area/perimeter2. The maximum value for area 
divided by the triangle perimeter is 363 (for an equilateral triangle). After 

smoothness values are averaged to produce value sums, the result is adjusted as 
follows: 336 sumssums = . The compliment of the obtained sums value was 

taken as a linearity value. The Ellipse Axis Ratio was determined by first finding the 
center of mass and the first and second order moments of the set of input points, and 
then finding the values of the major and minor axis of the best fit ellipse as 
determined by the formulas in [9]. The linearity value was given as 1-minor 
axis/major axis.  

3   Measuring Ellipticity 

Our new ellipse measures are presented here in two sections. The first deals with 
fitting an ellipse to point data, and the second measures the ellipticity of the point set 
by rating the accuracy of the ellipse fit. The quality of the fit relies on an accurate 
method of finding the center of the shape. We propose two ways of finding shape 
center. The standard way is by considering the center of gravity, and the other is by 
finding the true center of the shape. 

3.1   Fitting an Ellipse to a Set of Points 

Here we describe the algorithm that fits an ellipse to a set of points. Its input is just 
the set of points, and it outputs the locations of the optimal foci locations, along with 
the major and minor axes of the fit ellipse and the angle of orientation of the major 
axis of the fit ellipse. We begin by finding the angle of orientationα of the point set 
via moments. The moment based algorithm sometimes produces orientation angles 
that are normal to the actual shape orientation. To verify the correctness of the 
obtained valueα , the linearity of the set was measured twice. The first measure was 
made considering the orientation angle was α, and the second was made considering 
orientation angle α +90o. Linearity can be measured using any one of the linearity 
measures from [14]. The higher of the two linearity values corresponds to the actual 
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orientation of the shape. The orientation line passes through the selected center and 
has slope .α We then project all points onto the orientation line, resulting in a new 
array. The two extremity points min and max along the orientation line of the new 
array are found. In Figure 1 we see the blue orientation line which is also the line on 
which the points on the shape are projected. G is the center of the shape. Foci f1 and f2 
will be determined by the foci finding procedure to follow. 

                                        

Fig. 1. Orientation line with foci, min, max a, b, c, and G  Fig. 2. Varienca of summed foci dist. 

3.1.1   Finding Optimal Foci for Ellipse Fitting 
For simplicity, we assume that the point set has been translated such that its center is 
at the origin. Also, the point set has been rotated such that its orientation line lies on 
the x axis.  
In Figure 2, the distances to the foci are:  
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This is a continuous function of one variable, which can be solved by a standard 
equation root finding technique of numerical analysis, such as the bisection method. 
Note that, f(c) may have local minima and thus multiple solutions for equation f’(c), 
some of which could even correspond to local maxima. Therefore solving the problem 
in this direction is not straight forward. We therefore opted for a simple approximate 
solution that corresponds to a linear search with pixel unit distance steps. 

Foci in our implementation are found by inspecting each possible location for the 
pair between min and G for f1, and G and max for f2 simultaneously so that |Gf1|=|Gf2|. 
For each candidate location foci pair, the distances from each point on the shape to 
both foci are stored in an array. The variance of this array is calculated for each 
candidate pair, and the one with the lowest variance corresponds to the best choice for 
the locations of the ellipse fit foci. Now that foci are found, we need the median of the 
sum of distances from each point on the shape to both foci in order to find the length 
of the major axis a, which equals half of this sum. The distance c from focus f1 to 
center G is used to find the length of the minor axis 2 2 .b a c= −  We now have all of the 
necessary components of the ellipse fit to be able to evaluate it. 

3.2   Assesing the Fit Quality: Minimal Variance of Summed Foci Distances 

Once the foci of the ellipse fit have been determined, the quality of the ellipse fit can 
be assessed. This was done by first transforming the original point set into polar 
representation. This transformation is seen in Figure 3.  

In Figure 3, we see the inherent ellipse property that each point on the ellipse is 
equidistant to the sum of distances from both foci. We exploit this property when 
transforming the point set to polar coordinate form. As seen in the bottom part of 
Figure 3, the polar distance value for each point x from the center G will be the sum 
of distances from x to both foci,    r=d1 +d2. The angle α that vector Gx’ forms with 
the x-axis will remain the same as the angle Gx formed with the x-axis. For a perfect 
ellipse, the resulting shape can be drawn as a circle, but if its polar coordinate shapes 
are plotted as Cartesian, they would look highly linear, as seen in Figure 4.  

Applying a linearity measure to this polar representation results in a linearity value 
for the modified set of points. This linearity value represents the ellipticity value of 
the original set.  

A normalization was applied to the polar coordinate transformation of points since 
the angles the points form in the new representation is limited to the interval [0, 360], 
whereas the length of the radii they form is unbounded. This can result in polar 
representations that are not proportional to the original shape. To normalize the polar 
representation, the following information is gathered from it: the length of the 
smallest and largest radii rmin, rmax, and the variance of the radii, rvar. The 
normalization factor norm = (360*rvar)/N. 

This normalization factor represents the size of the interval each radius would be fit 
into. The larger the variance of the radii, the less the points fit to the ellipse. Therefore 
the interval they are placed in is larger to make the linearity value of this set smaller. 
Each radius value is normalized by the following statement: R=norm*(r-rmin)/(rmax-
rmin). The result is a number that fits a radius R into the interval [0, norm]. 
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Fig. 3. Transforming the input set to polar 
representation 

Fig. 4. Polar point set on a planar graph 

3.3   Average Distance Ratio to Ellipse and the Center 

 We propose a shape based ellipticity measure that can be applied to open and closed 
shapes. Let O be the center of fitted ellipse, and V be a point from the original set. Let 
U be the intersection of line VO with the fitted ellipse that is closer to V, therefore 
|VU|<|VO|. This intersection can be found by using the equations of a line and 
ellipse, which leads to a quadratic equation. The error measure used is the average of 
the distance ration to the ellipse and to the center, that is, |VU|/|VO|. It always returns 
a number between 0 and 1. 

               

Fig. 5. Finding intersect U on line VO Fig. 6. Choosing the correct shape center 

3.4   Finding the Center of a Shape 

The trivial way of choosing a shape’s center is to take the per-coordinate average of 
all pixels, which is the center of gravity. This is the method that is usually chosen 
when measuring any shape property such as linearity, orientability or elongation. 
Choosing the appropriate center of a shape when measuring ellipticity is more 
delicate and heavily influences the result of the ellipticity measure.  

To illustrate this point, we turn to figure 6. Here, we see a semi elliptical shape 
where the red dot represents the center of the shape as determined by the traditional 
method. Transferring the shape to polar coordinates with respect to the red dot would 
not yield a straight line, but rather a curved one. This would result in a much lower 
ellipticity measure than expected for the given shape. However, had the green dot 
been chosen as the center, the resulting polar coordinate representation would have 
looked similar to the line seen in Figure 4, and a much higher ellipticity measure 
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would have been awarded. We have experimented with both types of center finding 
methods in this work. In order to find the ‘true center’ of a shape, as opposed to its 
traditional center of gravity, we sampled k quintuplets of points from its point set. 
From each quintuplet, we found the center (Xtc, Ytc) that the points define via the 
method proposed in [9].  

4   Experimental Data 

The ellipticity algorithms were tested on a set of 20 closed shapes, shown in Figure 7, 
and 15 open shapes shown in Figure 8. These shapes were assembled by hand and are 
meant to cover a wide variety of non trivial curves. Each of them is comprised of 
between 100 and 500 points. This number of pixels is common in extracted edges of 
some computer vision systems.  

The center of gravity was close to the true center in almost all of the closed test 
curves seen in Figure 7. There are however big differences in the ellipticity values of 
the shapes seen in Figure 7 because the two centers were generally not close.  

Table 1 holds the ellipticity values for closed curves. The three algorithms for 
ellipse fitting found in table 1 are the new foci variance fitting measure proposed here, 
the fitting measure proposed by Voss and Sube [16], and Rosin’s sampling LMedS 
technique [9]. This set of three ellipse fitting techniques was evaluated by two 
separate ellipticity measures: the ellipticity via linearity measure proposed here 
(average orientation linearity measure [14] was applied in polar space), and the area 
based measure proposed by Koprnicky, Ahmed, Kamel (KAK) [5]. The right most 
column in table 1 shows the ellipticity values of the E measure in [10], which does not 
rely on an ellipse fit of a shape. 

                                

Fig. 7. Closed test curves Fig. 8. Open Test Curves 

The VS [16] fit algorithm is area based, so to be able to compare it to the shape 
based ones, the fit it produced based on the area pixels of a shape was evaluated for 
ellipticity against the perimeter pixels of the same shape. The perimeter pixels were 
extracted using a 3x3 mask that checked to see if a pixel had at least one neighbour 
which is not included in the shape. If it had at least one, it was considered as part of 
the perimeter. Most of the algorithms agree upon the ellipticity results of the figures 
which are highly elliptic to the naked eye, as seen in table 1. Shape 8 in figure 7 is the 
first major disagreement between the ellipticity fits and measures. The left two shapes 
of Figure 7 show the ellipse fit of our algorithm, and the general fit of the rest of the 
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algorithms for this triangular shape. Our fit is more elongated, and closely follows the 
triangle on the left hand side. The ellipticity values for this shape vary considerably 
between measures. Our measure produces the lowest ellipticity value for this shape 
and we feel that such a low score is merited given that a triangle should not be closely 
associated with an ellipse.  

Table 1. Ellipticity  results for closed curves 

 Ellipticity Via linearity   KAK  E 
  Foci var gc [16] VS fit  [9]  LMedS Foci var gc [16] VS fit [9] LMedS [10] 
1 1 0.98 1 0.95 0.99 0.96 1 
2 1 0.97 1 0.94 0.99 0.94 1 
3 1 0.98 1 0.96 0.99 0.97 1 
4 0.92 0.83 1 0.82 0.92 0.68 0.91 
5 1 0.98 1 0.98 1 0.98 1 
6 0.83 0.73 0.75 0.68 0.9 0.64 0.72 
7 0.99 0.84 0.97 0.8 0.94 0.93 0.9 
8 0.27 0.68 0.83 0.59 0.88 0.31 0.68 
9 0.51 0.54 0.49 0.44 0.87 0.73 0.35 

10 0.84 0.77 0.92 0.77 0.91 0.86 0.76 
11 0.99 0.89 0.99 0.84 0.96 0.97 0.87 
12 0.75 0.73 0.79 0.69 0.89 0.93 0.78 
13 0.77 0.63 0.69 0.24 0.87 0.64 0.55 
14 0.4 0.63 0.14 0.34 0.93 0.99 0.91 
15 0.85 0.77 0.82 0.89 0.95 0.15 0.97 
16 0.45 0.6 NA 0.49 0.86 NA 0.54 
17 0.89 0.37 NA 0.45 0.87 NA 0.38 
18 0.99 0.45 0.99 0.95 0.44 0.94 0.99 
19 0.89 0.32 0.85 0.92 0.33 0.93 0.98 
20 0.91 0.39 0.74 0.55 0.94 0.95 0.92 

Shape 16 in Figure 7 shares a similar discrepancy in awarded ellipticity scores. The 
star shape has similar disagreements in ellipticity scores to the triangular shape, and 
the explanation for these disagreements is also similar. The difference in fits can be 
seen in the right part of Figure 9. The rest of the closed shapes have ellipse fits and 
values that very closely follow the original shapes. 

 

Table 2. Ellipticity  results for open curves 

 Ellipticity Via polar linearity Distance ratio to ellipse and center

 
Foci 
var tc 

Foci  
var cg 

[9] 
LMedS 

Foci 
var tc 

Foci 
var cg 

[9] 
LMedS 

1 0.94 0.54 0.88 0.97 0.83 0.86 
2 0.98 0.66 0.93 0.98 0.82 0.96 
3 0.61 0.39 0.40 0.90 0.82 0.88 
4 1.00 1.00 1.00 0.97 0.97 0.98 
5 0.96 0.98 0.99 0.72 0.75 0.66 
6 0.10 0.71 NA 0.74 0.69 NA 
7 0.82 0.83 0.80 0.74 0.76 0.66 
8 0.82 0.56 0.71 0.92 0.89 0.79 
9 0.91 0.62 0.91 0.95 0.92 0.96 

10 0.96 0.22 0.97 0.89 0.79 0.78 
11 0.93 0.92 0.96 0.92 0.82 0.88 
12 0.79 0.92 0.87 0.86 0.83 0.87 
13 0.96 0.98 1.00 0.84 0.86 0.66 
14 0.92 0.93 0.87 0.77 0.83 0.78 
15 0.61 0.69 0.95 0.71 0.72 0.56 



234 M. Stojmenovic and A. Nayak 

Table 2 shows the results of the ellipticity measures as applied to the open curves 
in Figure 8. Our ellipse fits with true and gravity centers based on minimizing 
variance of summed distances to foci is compared with sampling LMedS method [9]. 
Fit accuracies are measured by our two newly proposed methods, polar linearity and 
average distance ratio to the fitted ellipse and its center.  

The choice of center significantly impacts the fit and ellipticity values of the 
shapes tested here. Shapes 1 and 2 in Figure 7 best illustrate the impact of center 
selection. In Figure 10, we see these two shapes coupled with their ellipse fits with 
both the center of gravity and true center approaches. The light blue dots represent the 
chosen centers for each shape. The ellipticity values for the shapes in Figure 9 are 
0.54, 0.94, 0.66, and 0.98 respectively.  

       

Fig. 9.  Ellipticity of a triangle and a star Fig. 10. Center of gravity vs. true center 
impact 

5   Conclusion 

Finding the true center of an ellipse greatly improved the fit for open curves. 
However, the orientation line also heavily influences the overall quality of the fit. If 
the orientation line is found not to overlap with the actual visual orientation of the 
shape, the foci finding procedures are forced to find foci locations that are along this 
erroneous orientation line. This diminishes the ellipticity values for highly elliptical 
shapes. The LMedS sampling method [9] for finding the true center of a shape does 
not always return a center since some shapes cannot be easily fit with an ellipse. This 
is especially true considering the 5 point sampling technique which might not produce 
quintuplets of points that can be inscribed with just one ellipse. The other problem 
with the sampling technique is that it might not return an ellipse, but instead either 
hyperbola or parabola. We have made an extensive literature review, investigation, 
and implementation of existing methods. Most ellipticity methods from literature do 
not fit our criteria for a variety of reasons. Most of the methods are area based [5, 16, 
4], and some of the ones that are shape based do not return ellipticity values that 
reflect how elliptical a shape is, rather they can just be used to rank shapes (moment 
based [10], [6, 7]). Other than LMedS [9] for fitting, our methods appear to be the 
only ones that are boundary based, guaranteed to return an ellipse, work with open 
and closed curves, and return meaningful number in the interval [0,1].  

References 

1. Bookstein, F.L.: Fitting conic sections to scattered data. Computer Graphics and Image 
Processing 9, 56–71 (1979) 

2. Csetverikov, D.: Basic algorithms for digital image analysis, Course, Institute of 
Informatics, Eotvos Lorand University, visual.ipan.sztaki.hu  



 Direct Ellipse Fitting and Measuring Based on Shape Boundaries 235 

3. Davies, E.R.: Algorithms for ultra-fast location of ellipses in digital images. Proc. IEE 
Image Processing and its Applications 2, 542–546 (1999) 

4. Fitzgibbon, A.W., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE T-
PAMI 21(5), 476–480 (1999) 

5. Koprnicky, M., Ahmed, M., Kamel, M.: Contour description through set operations on 
dynamic reference shapes. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, 
vol. 3211, pp. 400–407. Springer, Heidelberg (2004) 

6. Proffitt, D.: The Measurement of Circularity and Ellipticity on a Digital Grid. Pattern 
Recognition 15(5), 383–387 (1982) 

7. Peura, M., Iivarinen, J.: Efficiency of simple shape descriptors. In: Arcelli, C., Cordella, 
L.P., Sanniti di Baja, G. (eds.) Advances in Visual Form Analysis, World Sci. (1997) 

8. Rosin, P.L.: Ellipse fitting using orthogonal hyperbolae and Stirling’s oval. CVGIP: Graph 
Models Image Process 60(3), 209–213 (1998) 

9. Rosin, P.L.: Further five-point fit ellipse fitting. CVGIP: Graph Models Image Proc. 61(5), 
245–259 (1999) 

10. Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision 
and Applications 14, 172–184 (2003) 

11. Rosin, P.L.: Assessing error of fit functions for ellipses. CVGIP: Graph Models Image 
Process 58(5), 494–502 (1996) 

12. Rothe, I., Süße, H., Voss, K.: The method of normalization to determine invariants. IEEE 
T-PAMI 18(4), 366–376 (1996) 

13. Rosin, P.L., Zunic, J.: 2D shape measures for computer vision. In: Handbook of Applied 
Algorithms: Solving Scientific, Engineering and Practical problems, Wiley, Chichester 
(2007) 

14. Stojmenovic, M., Nayak, A., Zunic, J.: Measuring Linearity of a Finite Set of Points. In: 
IEEE International Conference on Cybernetics and Intelligent Systems (CIS), Bangkok, 
Thailand, pp. 222–227 (2006) 

15. Tuset, V.M., Rosin, P.L., Lombarte, A.: Sagittal otolith shape used in the identification of 
fishes of the genus Serranus. Fisheries Research 81, 316–325 (2006) 

16. Voss, K., Süße, H.: Invariant fitting of planar objects by primitives. IEEE T-PAMI 19, 80–
84 (1997) 

17. Zhang, S.C., Liu, Z.Q.: A robust, real time ellipse detector. Pattern Recognition 38, 273–
287 (2005) 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


