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ECDS: An Effective Shape Signature using Electrical

Charge Distribution on the Shape

Zhiyang Li1, Wenyu Qu1,∗, Junjie Cao2, Heng Qi3, Keqiu Li3, Milos
Stojmenovic4

Abstract

Motivated by the fact that electrical charge distributions are almost the
same for similar shapes but not vice versa when shapes reach their electrical
equilibrium condition, we propose a novel shape signature based on the elec-
trical charge distribution on the shape (ECDS). Compared to other shape
signatures, ECDS has the following interesting properties: 1) ECDS is a lo-
cal measure but computed in a global manner. Thus, it is more robust to
noise and shape variations. 2) ECDS is articulation insensitive and there-
fore exhibits better performance by the introduction of generalized coulomb
potentials. This allows it to better match shapes whose parts can move in-
dependently, such as scissors. 3) The sum of ECDS remains constant during
the process of reaching electrical equilibrium, which does favor some ap-
plications. Numerous experiments have been done on several public shape
databases (MPEG-7 database, articulated shape data set, Kimia silhouettes
and ETH-80 data set), demonstrating that ECDS has the above properties
and compares well with other shape descriptors in many kinds of shape re-
trieval and recognition tasks.
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1. Introduction

Due to the rapid development of imaging technologies and the internet,
it is convenient for people to reference and obtain a large number of images,
and applications such as image retrieval and recognition have become very
common. However, textual annotation of images is inefficient and sometimes
impossible in large image database. Retrieval by image content (CBIR) may
be used instead of textual annotation [1]. The shape, as the most impor-
tant feature of an image, plays a prominent role in the content-based search
method. Compared to color or texture, shape alone can represent the whole
object, but common shapes require hundreds of parameters to be represented
explicitly [2]. In order to more easily handle, store and compare shapes,
researchers propose to represent shapes by intelligent descriptors using sim-
plified representations that carry most of the important information. Thus,
finding meaningful and efficient shape descriptors is a fundamental problem
in shape retrieval and recognition.

Since the contour or silhouette is the most important feature of a shape,
various shape descriptors based on the contour are proposed in the literature.
Early contour-based descriptors consider the contour as a whole and repre-
sent it by some global measures such as area, eccentricity, chord context,
invariant moments, spectral coefficients and so on [3, 4, 5, 6, 7]. In general,
global descriptors are compact and efficient for comparison. However, most
of these descriptors have only low discrimination and are sensitive to large
deformations of the shape. An example is shown in the first pair of shapes
in Fig. 1. Since local geometry information is lost in global descriptors, it
is not easy for global descriptors to capture the part similarity between the
camels. Thus, recently proposed shape descriptors focus on local features
and hybrid (global/local) descriptors. The shape signature is an important
example of these kinds of descriptors.

Shape signature is usually defined as any 1-D function on a shape, derived
from the shape contour points. Compared to other shape descriptors such as
shape context or multi-scale shape descriptors, shape signatures can capture
the essential information of the shape in a more compact manner. Early pro-
posed signatures include centroid distance, complex coordinates, curvature,
tangent angle, local diameters, etc. [3, 4, 8]. They are concise and compact
representations of the shapes and widely used in many shape analysis and
recognition tasks. But most of these shape signatures fail to discriminate
shapes with large differences. Recently, Xu et al. [9] propose a novel shape
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Figure 1: Three pairs of shapes that may be mismatched by existing methods.

signature called contour flexibility, which represents the deformable potential
at each landmarks of the contour. The retrieval experiments in the MPEG7
shape database show that contour flexibility obtains the highest Bullseye
scores among the shape signatures. However, although many kinds of shape
signatures have been presented in the literature, the existing signatures have
the following problems:

• Nearly all the shape signatures are estimated from the neighbors of
each point, such as curvature, tangent angle, contour flexibility. Neigh-
bor size is reported to usually have a significant impact on the signa-
tures, especially when substantial noise is present. Noise is therefore
widespread in the shape data (the second pair of shapes in Fig. 1).
Introducing multi-scale or scale space techniques [10] can reduce this
sensitivity but are computationally demanding for the shape matching
process.

• Most shape signatures are not invariant to articulation (isometric trans-
formation of the shape), since they are computed in a local way. As
a result, the third pair of shapes in Fig. 1 may cause mismatching
by these signatures, because articulation between two shapes intro-
duces adverse information to the signatures. Effective shape signatures
should capture both the local geometry information and part structure
of the shape in a hybrid manner.

• In general, the existing signatures cannot yet provide entirely satis-
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factory solutions to describe the shape variations well and have low
performance in shape retrieval and recognition experiments, since they
are only 1-D functions on the shape. A natural improvement is utilizing
N-D functions, such as shape context [11, 12]. However, shape context
is less compact and computationally demanding, like other multi-scale
methods.

Based on the above observation, it is useful to propose a shape signature
which can overcome the mentioned problems and perform as well as or even
better than state-of-the-art shape descriptors. Aiming at this goal, we pro-
pose an effective shape signature named ECDS. Supposing that a 2D shape
is a charged conductor, the basic idea of ECDS is representing the shape by
its electrical charge distribution when the shape reaches the state of electro-
static equilibrium. Since charge tends to accumulate at a sharp convexity
and vanish at a sharp concavity [13], the proposed ECDS descriptor captures
the local curvature information and part structure of the shape. Meanwhile,
ECDS is computed as the solution of a system of linear equations, which
considers all data points at once. It makes ECDS more resilient to noise
than other signatures, such as curvature.

The contributions are summarized as follows:

• A novel shape signature ECDS, which is invariant to translation, scale,
rotation and insensitive to noise and articulation, is proposed.

• Different from the classic electrical charge distribution, ECDS is com-
puted based on the generalized coulomb potential representing part-
aware metric and long-range interactions, which significantly increases
its descriptive power.

• Numerous experiments have been done on several public shape databases
demonstrating that ECDS performs as well as or even better than the
state-of-the-art shape descriptors, including the shape signatures, the
shape context and the multi-scale descriptors.

The rest of this paper is organized as follows: Section 2 gives a brief
overview of related work on shape representation methods. Section 3 presents
ECDS representation and its computation. The generalized electrical poten-
tial and the characteristics of ECDS are also discussed in this section. Section
4 contains the description of the implementation and some experimental re-
sults. Finally, Section 5 summarizes the paper.
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2. Related Work

As a hot topic in computer vision, shape representation and analysis has
been extensively studied. Since shapes commonly are 2D images which are
projections from 3D objects, the silhouettes may change significantly if the
viewpoint changes or 3D objects make non-rigid motions (e.g., articulation).
To make things worse, shapes are extracted from 2D images. Heavy noise
in shape data is unavoidable due to segmentation errors caused by partial
occultation, lighting variation and so on. For the above reasons, many pro-
posed shape descriptors are driven by different aspects of the problem such
as robustness to noise or insensitivity to articulation, etc. There are no en-
tirely satisfactory solutions in the shape representation area. A good survey
of general shape representation methods can been found in [3, 14]. In this
paper, we focus on descriptors requiring contour information only, which are
different from descriptors based on the interior of the shape, such as repre-
senting each internal point in the interior by a value reflecting the mean time
required for a random walk beginning at the point to hit the boundaries [15].
Thus, only some important contour-based shape descriptors are reviewed as
follows.

Since shapes are represented by their contours, it is natural to define
some simple global shape descriptors, such as area, eccentricity [7], major
axis orientation and so on. However, these simple descriptors are coarse rep-
resentations, and can only discriminate very different shapes. They usually
need to be combined with other shape descriptors in order to be more effec-
tive. Moment-based [16] and spectral [6, 17] are two more kinds of global
descriptors. Moment invariants have been frequently used as some kinds of
shape features. In order to reduce the computational burden for moments,
Chen [5] presented improved moment invariants which are computed by the
shape boundary only, and applied the moment invariants in shape discrim-
ination. Since noise and boundary variations are common in shape data,
representing a shape in the spectral domain can alleviate these problems to
some extent. Fourier-based shape descriptors [6] and wavelet-based shape
descriptors [17] are proposed to transform the shape data into a spectral
space, and represent the shape by their coefficients.

Noticing that representing a shape only in a global manner cannot give
an entirely satisfactory solution, many recent publications pay great atten-
tion to local or hybrid (local/global) descriptors. Shape signature is a well-
studied technique, which represents the shape by a one dimension function.
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The shape signature corresponds to a descriptive vector in a discrete setting,
and is widely used in shape visualization, retrieval, and recognition. Com-
mon shape signatures include centroid distance, tangent angle, curvature,
chord-length, etc. A high performance signature called contour flexibility is
proposed by Xu et al. [9]. Contour flexibility represents the shape by the de-
formable potential at each landmark on the contour, and copes with the noise
and deformation better. However, determining an adaptive bendable size to
compute the contour flexibility is a problem. Most of the shape signatures
can be usually normalized into being translation and scale invariant, but it
is difficult to make them articulation invariant. In general, shape signatures
at each landmark are estimated from their local neighbors. It is obvious that
representing a shape only by local geometry information will suffer more from
noise and local changes.

Common solutions to improve the performance of shape signatures in-
clude introducing scale space methods or hierarchical coarse to fine represen-
tation strategies to the signatures. Mokhtarian and Mackworth [10] proposed
a curvature scale space shape descriptor to overcome the noise and scale prob-
lems. In this method, shapes are gradually smoothed by a Gaussian kernel
until they become totally convex. The zero-crossings of the curvature func-
tion during the smoothing process are located, and form a hierarchical CSS
images at last. CSS images can then be used to perform the task of shape
matching. However, the matching proves to be very expensive and complex.
Other hierarchical descriptions include the shape tree [18], curvature tree
[19] etc. Similar to hierarchical descriptors, shape context (SC) [11] cap-
tures global and local characterizations of shapes in another kind of hybrid
manner, which is receiving more and more attention. For each point on the
contour, it is computed by the distributions of the remaining points relative
to it. Based on SC, inner distance shape context (IDSC) [12] was proposed
to cope with shapes with articulated parts. The authors used the distance
of the shortest path inside the shape instead of the traditional Euclidean
distance, which achieved better retrieval and recognition performance in the
experiments. However, the hierarchical descriptors and the shape context
are less compact than shape signatures and computationally demanding for
some applications, such as shape matching.

Another way to obtain better descriptors is decomposing contours into
different meaningful parts, and building shape descriptors based on this de-
composition. By modeling shapes as a combination of approximate con-
vex parts connected by non-convex junctions, Gopalan et al. [20] proposed
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articulation-invariant shape descriptors. The performance of their algorithm
is directly related to the quality of the shape decomposition. Meanwhile,
obtaining a meaningful shape decomposition has been considered as a funda-
mental problem in many shape-related areas. Convex shape decomposition is
the most important kind of decomposition [21, 22]. Based on the observation
that electrical charge tends to accumulate at a sharp convexity and vanish
at a sharp concavity, Wu and Levine [13, 23] proposed to decompose shapes
along the deep concavities which were detected by the electrical charge den-
sity distribution (ECDD) on the shapes. However, ECDD cannot be used
as an effective shape signature. Firstly, ECDD is not invariant to scale, the
charge density is dependent on the resolution. Secondly, ECDD is sensitive
to articulation since ECDD is computed by the Euclidean distance metric.
Thirdly, due to classic electrical potential, the ECDD method accumulates
too much charge at flat locations which does not properly reflect the geom-
etry information of shapes. The experiment result in Table 3 also shows its
ineffectiveness in shape recognition. Inspired by the ECDD convex decom-
position method, we present the ECDS signature by introducing generalized
coulomb potential which represents the part-aware metric and long-range
interactions (Section 3.3). ECDS can overcome the above shortcomings of
ECDD. Furthermore, although ECDS is a kind of shape signature, it cap-
tures both the local geometry information and part structure of the shape in
a hybrid manner.

3. Methodology

In this paper, we refer to shape as a single closed contour B of the object
O, and B is represented by the separated parameterized landmark sequence
B(n) = {p1, p2, ..., pn} in a clockwise direction, where pi = (xi, yi) is the
i-th point, with xi and yi its corresponding coordinates. To avoid bias,
B(n) is uniformly sampled along the contour. The goal of our method is
to design a shape signature based on the electrical charge distribution on
the shape (ECDS). For the sake of completeness, we first present the ECDS
representation and its computation based on the classic ECDD method [23]
in Section 3.1 and 3.2, then give the definition of our generalized electrical
potential and discuss the characteristics of ECDS.
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3.1. The Proposed ECDS Representation

In order to explain the ECDS representation, we begin with three physical
facts.

• FACT 1: The electric potential V produced by an isolated point charge
Q, at a distance r from the charge, can by expressed by Eq. 1

V =
1

4πε0

Q

r
, (1)

where ε0 is the electrical permittivity of space.

• FACT 2: Any charge on an isolated charged conductor will finally reside
on the surface and be no longer in motion. The charged conductor then
reaches the state of electrical equilibrium.

• FACT 3: Conservation of charge: Charge will be conserved whatever
the shape and its corresponding charge distribution is. That is to say,
the total amount of charge on the shape remains constant during the
process of reaching electrical equilibrium.

Suppose the object O is a charged conductor, and no other charge or
conductors exist near it. if a certain amount of charge is placed on O, ac-
cording to FACT 2, the entire charge will finally reside on the boundary B
of O, and B will reach a state of equipotential equilibrium. An observation
is that charge tends to accumulate in larger amount at locations of greatest
curvature under the electrostatic equilibrium condition. Thus, the charge
distribution (CD) on the boundary B captures the geometry information of
B, and has larger values in the convex regions and smaller values in concave
regions.

Next, we will explain how to compute CD. Since the electrical potential
V (p) of the point p onB is contributed to by the entire charge on B, according
to Eq. 1 , the computation of V (p) can be derived by an integration over B
(Eq. 2).

V (p) =
1

4πε0

∫
B

ρ(p′)
|p− p′|dB, (2)

where ρ(p′) is the charge density at position p′ of B, |p − p′| is the Eu-
clidean distance between p and p′. Noticing that B has been uniformly
parameterized, and represented by the aforementioned landmark sequences
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B(n) = {p1, p2, ..., pn} , we can discretize the line integral and compute V (p)
by Eq. 3

V (p) =
1

4πε0

n∑
i=1

Qi

|p− pi| , (3)

where Qi is the charge on the i-th segment of B(n). The ECDS signature of
B can be expressed by ECDS(B) = [Q1, Q2, . . . , Qn] in a discrete version.
We will discuss how to compute Qi in the following section.

3.2. Finite Element Solution

We use Q to represent the total amount of charge on B, which is known
beforehand. Thus, according to FACT 3, we have one equality Q =

∑n
i=1Qi.

In order to compute Qi, we need to find more equalities. According to FACT
2, the surface of any charged conductor is an equipotential surface when
reaching the state of electrostatic equilibrium. Thus, the electrical potentials
at every point pi of B are with the same value V . That is to say, another n
equations are obtained based on Eq. 3. We formulate these equations into a
system of linear equations as follows:

AX = B. (4)

Here

X = [Q1, Q2, . . . , Qn, V ]T , B = [0, 0, . . . , 0, Q]T ,

and

A =

⎛
⎜⎜⎜⎜⎜⎝

A11 A12 · · · A1n −1
A21 A22 · · · A2n −1
...

...
. . .

...
...

An1 An2 · · · Ann −1
1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎠

,

where

Aik =
1

4πε0

1

|pi − pk| . (5)

We omit the constant term 1
4πε0

in Eq. 5 in practice for computation effi-
ciency, and choose Aii = 100 ∗ maxj �=iAij to avoid divisions by zero. The
final ECDS representation is obtained by selecting the first n values of the
solution X.
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3.3. Generalized Electrical Potential

In the above section, we explained how to compute ECDS by the classic
model of electrical potential. The ECDS representation reflects the curvature
of the shape, and should be more stable to noise since it is computed in a
more global manner, However, we find that ECDS is unsatisfactory in some
cases, which leads us to discuss its two main drawbacks.

(a) (b) (c)

(d) (e) (f)

Figure 2: The comparison between classic electrical potential and generalized electrical
potential. The first column: ECDS computed by classic electrical potential. The mid-
dle column: ECDS computed by introducing inner distance. The right column: ECDS
computed by introducing both inner distance and sub-linear exponent m = 0.2.

The first drawback is that the classic Euclidean distance in Eq. 5 is
not a part-aware metric. If two convex regions are near one another, they
should independently accumulate significant charge. However, the reverse
is probably true in fact, because charge tends to position itself to increase
their distance from one another. Take Fig. 2(a) for example. The feet of
the camel ought to accumulate more charge, since they are high curvature
regions. However, the foot labeled by the red box disobeys this rule, because
this foot is too near the other foot. Introducing the part-aware metric in Eq.
5 can solve this problem. Here, We use the inner distance proposed in [12]
instead of the Euclidean distance. The inner distance between two points on
a shape contour is defined as the distance of the shortest path connecting
them inside the shape. Take Fig. 2(e) for example. The inner distance
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between the point x and y is the distance of the path illustrated by the black
dotted line. Although the Euclidean distance between the two feet labeled
in the red box in Fig. 2(a) is small, the inner distance between them is large.
It makes the feet accumulate a larger amount of charge.

The second drawback is that the inverse of the distance used in Eq. 5
decays very fast, making the repulsive force between the far away charge
too small and too much charge accumulates at flat locations. Take the first
column of Fig. 2 for example, the regions labeled by the black box are flat
parts but accumulate significant charge. These labeled parts are slightly
further away from the other parts of the shape. Thus, the repulsive forces
between them is small, accumulating a significant charge. Introducing a sub-
linear exponent m in the norm of Eq. 5 can reduce the decay speed. It
penalizes many small discontinuities more than a few large ones and solves
this problem to some extent. Take the right column of Fig. 2 for example.
The sub-linear exponent m = 0.2 performs well to control the repulsive forces
between the charge at different distances.

Based on the above two reasons, we finally reformulate Eq. 5 as follows:

Aik =
1

ID(pi, pk)m
, (6)

where ID(pi, pk) is the inner distance between the point pi and pk, m ∈ (0, 1)
is the sub-linear exponent parameter which intuitively controls the influence
range. In the limit case m = 0, the entire charge has the same influence
no matter how far it is. Base on Eq. 6, the calculation formula Eq. 3 for
electrical potential can be reformulated as the following Eq. 7. This new kind
of potential computed by Eq. 7 is named generalized electrical potential in
this paper.

V (p) =
1

4πε0

n∑
i=1

Qi

ID(p, pi)m
. (7)

3.4. Characteristics of ECDS

In this section, we will discuss the characteristics and advantages of
ECDS. Supposing that a shape S is represented by an uniformly sampled
landmark sequence {p1, p2, ..., pn} and Q = n charge is placed on it as men-
tioned above, ECDS(S) = [Q1, Q2, . . . , Qn] will have some interesting prop-
erties and certain advantages over traditional shape descriptors. These prop-
erties are summarized as follows.
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Invariance: For the given shape S, its ECDS is computed by Eq. 4.
Since the element Aij of the coefficient matrix A is a relative measure between
the landmark i and j, A is independent of the coordinate system. That
is to say, ECDS(S) is invariant to translation and rotation. And the last
equality of Eq. 4 shows ECDS(S) is invariant to scale. Furthermore, from
Eq. 6, Aij is computed by the inner distance between the landmark i and
j. An apparent fact is that inner distance is articulation insensitive. Thus,
ECDS(S) is robust to articulation and more effective at capturing structural
features of the shape. The scissors in Fig. 3(b) is an articulated form of the
one in Fig. 3(a). From the first row of Fig. 3, we see that ECDS of the two
scissors are almost the same, showing that ECDS is stable when the scissors
make an approximated articulation. The matching comparison in the second
row shows that ECDS computed by inner distance is more descriptive than
when computed by Euclidean distance.

(a) (b)

(c) (d)

Figure 3: ECDS is insensitive to articulation. The first row: ECDS of a scissor shape (a)
and its articulated form (b). The colorbar represents normalized ECDS. The second row:
the comparison of matching via ECDS computed by Euclidean distance (c) and via ECDS
computed by inner distance (d).

Smoothness and Conservation: ECDS(S) is derived from the integral
function Eq. 2, and approximated by the solution of a system of linear
equations Eq. 4. Thus, ECDS(S) is continuously distributed on the shape S.
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Further more, charge cannot be created or destroyed, since n charge has been
placed on S, the sum of ECDS is equal to n. It means charge is conserved
whatever the shape and its corresponding charge distribution is.

Globality and Locality: A good shape descriptor should capture not
only the local geometry information but also the global structure of the shape.
The linear equations Eq. 4 consider all the landmarks at once when comput-
ing the charge distribution for each landmark. Thus, although the element
of ECDS is the local amount of charge for each point, it is determined by all
the points on the shape, which is intrinsically different from other shape sig-
natures, such as curvature and contour flexibility. Meanwhile, noticing that
these landmarks not contribute equally to the observation position, their
contribution is reversely weighted by a sub-linear exponent m of the inner
distance between these landmarks and the observation. So, ECDS(S) cap-
tures both the local and global information of the shape S, and it is more
resistant to noise than curvature-based methods since it is computed in a
more global manner according to Eq. 4.

4. Experiments and Performance Analysis

In this section, we evaluate the performance of ECDS via shape match-
ing and retrieval experiments on several public shape databases. The ex-
periments are carried out on a computer with an Intel(R) E5620 2.4GHz
CPU and 12GB memory. The code is implemented in MATLAB 2010b with
some parts written in C with a MEX interface. Upon obtaining ECDS, dy-
namic programming (DP) technique is utilized for the following matching
procedure. The core code of the DP is provided by Ling and Jacobs [12].

Table 1: The default values of parameters in the experiment

Parameters
ECDS computation ECDS matching
n Q m # starting points k penalty τ

Value 200 200 0.01 8 0.05

Now we describe the parameters used in the experiments. We uniformly
sample n = 200 landmark points for each shape, and select the sub-linear
exponent m = 0.01, the total amount of charge Q = n as the default case.
The parameters for computing the inner distance and matching by dynamic
programming are chosen according to the suggestion of Ling and Jacobs [12].
The default values of all the parameters in the implementation are listed in
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Table 1. In the following section, experiments on different kinds of shape
databases will be discussed respectively.

Figure 4: Shapes of two databases. (a) articulation database [12], (b) Kimia database
[24].

Table 2: Retrieval results on the articulation database
Method Rank 1 Rank 2 Rank 3 Rank 4

L2 (baseline) 25/40 15/40 12/40 10/40
SC [11] 20/40 10/40 11/40 5/40

IDSC [12] 40/40 34/40 35/40 27/40
PWGF [25] 40/40 38/40 33/40 20/40
PWGF + RF 40/40 38/40 36/40 30/40
ECDS (ED) 35/40 24/40 14/40 15/40
ECDS (ID) 40/40 39/40 38/40 31/40

4.1. Experiments on an Articulation Database

In order to evaluate the performance of the ECDS descriptor on shapes
with articulations, we perform tests on the articulation data set introduced
by Ling and Jacobs [12]. This data set includes shapes with explicit artic-
ulations, consisting 8 objects with 5 shapes each, which are shown in Fig.
4(a). For performance evaluation, we exploit the method described in [12].
Each shape is taken as a query for the retrieval test, and the top four similar
shapes are selected as ranks 1, 2, 3, 4. The final result is summarized as
the number of these shapes falling into the correct category. Noticing there
are 40 shapes in the database, so the best result for each rank is 40. Ta-
ble 2 gives the comparison of ECDS signature with other shape descriptors.
Default values are chosen for all parameters in this experiment. Although
ECDS is a kind of shape signature which should obtain lower retrieval scores
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than shape context based methods such as IDSC, the results show that our
method performs best and achieves the highest scores among these methods.
It is worthy to point out ECDS performs better than the pairwise geometrical
features based method [25] even though their result has been refined.

Figure 5: Example shapes from Part B of the MPEG-7 Core Experiment CE-Shape-1 data
set [26].

4.2. Experiments on MPEG7 Shape Database

Part B of the MPEG-7 Core Experiment CE-Shape-1 data set is widely
used to test shape matching and retrieval methods. There are 70 groups of
objects and 20 binary images in each group. That is to say, the data set
contains 1400 shapes. Some example shapes from the set are shown in Fig.
5. Upon obtaining ECDS for the shapes in the database, we match each pair
of shapes by their ECDS via a dynamic programming method (DP). The
bulleye test is then used to make an evaluation of the matching and retrieval
performance. In a Bullseye test, each shape is taken as a query, and the 40
shapes with the smallest distance between the query are retrieved from the
database. The Bullseye scores are computed by Eq. 8

SCORE =
N

20
, (8)

where N is the number of correct shapes in the 40 retrieval shapes. From
Eq. 8, the Bullseye score equals 1 if there are 20 shapes (including the query
shape itself) falling into the same group with the query shape in the 40
retrieval shapes. The final Bullseye score is taken as the average of all of
the query shapes. The methods with the highest Bullseye score have better
performance.
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Table 3: Retrieval rate of different methods for the MPEG7 CE-Shape-1 database
Alg. CSS SC + TPS IDSC + DP PWGF + RF TAR+DSW ASC + DP
Score 75.44% 76.51% 85.40% 86.48% 87.23% 88.30%

Alg. ECDD KC LD CF ECDS (ID) ECDS (ED)
Score 67.25% 69.36% 75.28% 82.65% 83.21% 84.31%

Table 3 gives the comparisons between our ECDS descriptor and other de-
scriptors. The shape context methods such as IDSC+DP [12], ASC+DP [27]
and the multi-scale descriptor TAR+DSW [19] perform better than shape
signatures in general. However, shape context and multi-scale descriptors
are less compact and less efficient than shape signatures. For shape signa-
tures (the second row of the table), we compare ECDS with the signatures
based on electrical charge density distribution (ECDD), K-curvature(KC),
local diameter (LD) and contour flexibility (CF). The classic ECDD has the
lowest performance in shape recognition. It is obviously not an effective
shape signature. In contrary, ECDS based on Euclidean distance obtains
the highest Bullseye scores 84.31 among all of these signatures, and performs
better than CF+DP [9], which had previously obtained the highest Bullseye
score among shape signatures (to the best of our knowledge). Meanwhile,
ECDS compares well with the shape context methods. For the MPEG7 shape
database, The recently proposed AIR descriptor [20] obtains the highest re-
trieval score among all the shape descriptors. However, the AIR descriptor
is built based on convex shape decomposition which is a time-consuming
process and not a trivial task for complex shapes.

It is interesting to note that ECDS computed by Euclidean distance per-
forms better than ECDS computed by inner distance. It may be because only
a few classes of the 70 classes are articulated shapes in MPEG-7 CE-Shape-
1. The inner distance ECDS variant has not achieved remarkable results on
this test set. Fig. 6 shows class-specific Bullseye scores for ECDS (ED) and
ECDS (ID). Comparing to ECDS (ED), ECDS (ID) achieves over 10% per-
cent precision improvement in seven classes which have articulated shapes:
the 29th class (device2), the 38th class (elephant), the 45th class (frog), the
49th class (horse), the 60th class (ray), the 61th class (sea snake) and the
65th class (stef).

Performance Analysis of the Parameters: In this part, some parameters
in our system are discussed. All the experiments are done on the MPEG7
shape database.

Firstly, the influence of the number of landmarks n is tested. We uni-
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(a)

(b)

Figure 6: The class-specific Bullseye scores of ECDS computed by Euclidean distance (a)
and ECDS computed by inner distance (b).

formly sampled each contour of the MPEG7 shape database by n = 50,
n = 100, n = 200, n = 300 landmarks and do shape retrieval experiments
respectively. The other parameters are chosen in the default case. Fig. 7 (a)
illustrates the recognition rate of each case, showing that larger n achieved
higher recognition rate. The computation times (descriptor computation per
shape + descriptor matching per pair) for ECDS (ID) are listed in Table 4.
n = 200 is selected for the tradeoff between accuracy and efficiency.

(a) (b)

Figure 7: Recognition rate on the MPEG7 shape database with different number of land-
marks (a) and different m (b).
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Table 4: The comparison of ECDS with different numbers of landmarks
#landmarks n = 50 n = 100 n = 200 n = 300

ECDS computation 0.03s 0.04s 0.12s 0.31s
ECDS matching 0.3ms 1.0ms 4.3ms 11.8ms

Next, we discuss the parameter sub-linear exponent m. m intuitively
controls the repulsive force between the charge. Experiments with m = 0.5,
m = 0.2, m = 0.1, m = 0.01 are performed. In each case, we select other
parameters in the default case. The final recognition rates are shown in Fig.
7 (b). The Bullseye scores is above 80% when m <= 0.2 and smaller m
values achieve a higher recognition rate. Thus, m = 0.01 is chosen as the
default case.

4.3. Experiments on the Kimia Database

Comparisons are done on the shape database provided by Kimia’s group
[24]. The data set includes 99 shapes from 9 categories. The shapes are
illustrated in Fig. 4(b). In order to evaluate performance, we exploit the
method described in [12]. For each retrieval test, the performance is measured
according to the correct matching at the top 10 ranks, similarly to the above
mentioned articulation database. Obviously, the best result for each rank is
99. We use parameters n = 300, k = 12, and the other parameters retain
their default values. The comparison results are listed in Table 5. Our
method compares well with other methods, and obtains the highest score for
the first seven ranks.

Table 5: Retrieval results on Kimia 1 data set
Method 1st 2st 3st 4st 5st 6st 7st 8st 9st 10st

SC 97 91 88 85 84 77 75 66 56 37
Gen. Model 99 97 99 98 96 96 94 83 75 48
Shock Edit 99 99 99 98 98 97 96 95 93 82
IDSC+DP 99 99 99 98 98 97 97 98 94 79
PWGF 99 97 98 96 97 97 96 91 83 75

PWGF + RF 99 98 97 99 98 95 97 97 93 78
ECDS(ED) 99 99 99 99 98 98 97 94 91 80

4.4. Experiments on ETH-80 Database

The ETH-80 database [28] contains 80 objects, which are classified into
8 categories: apple, car, cow, cup, dog, horse, pear, tomato. There are 41
images from different viewpoints for each object. Thus, ETH-80 contains
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3280 images in total. Some example images are shown in Fig. 8. Note that
only the shape contours of the images are used for matching and retrieval. We
exploit the standard leave-one-object-out cross-validation testing protocol
[12] to evaluate the performance of the existing methods. It means each
image is taken as a query, and matched with all the images from the other 79
objects. The candidate with the smallest matching error is returned as the
retrieved image. If the retrieved image and the query image fall in the same
category, the recognition is considered successful. The final recognition rate
is taken as the average of all of the images.

Figure 8: 80 Example images from each object in the ETH-80 database [28].

We test ECDS + DP on this data set with parameter k = 16, as in
[12]. The other parameters are set to their default values. To the best of
our knowledge, the best reported recognition rate on this data set is 93.02%,
obtained by the decision tree based approach [28]. This approach is a multi-
cue method combining seven single-cue methods. Table 6 lists recognition
rate of some single-cue methods. It shows that ECDS achieves the best
recognition rate of 89.27% among all of the single cue approaches.

Table 6: The comparison of recognition rates of methods on the ETH-80 database
Method SC + DP IDSC + DP Pairwise GF ECDS (ID) ECDS (ED)
Rate 86.40% 88.11% 87.48% 87.84% 89.27%
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5. Conclusions

We propose an effective shape signature ECDS by the electrical charge
distribution on the shape. ECDS is computed via the solution of a system of
linear equations, which makes it continuously distributed and very robust to
noise. Furthermore, generalized coulomb potentials representing part-aware
metric and long-range interactions are introduced, making ECDS capture the
local curvature and the structure information of the shape simultaneously.
This makes the signature insensitive to changes in shape articulation. Exper-
iments in shape recognition and retrieval demonstrate that ECDS has some
distinguishing characteristics and advantages, such as invariance, conserva-
tion and so on. Future works will concentrate on applying ECDS to more
shape recognition and classification tasks.
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