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Abstract—We are interested in circularity measures which are 
invariant to rotation, scaling, and translation, are calculated 
very quickly and are resistant to protrusions in the data set. 
We propose several measures here, all of which are based on 
existing linearity measures that have been adapted to measure 
circularity. In order to make use of these linearity measures, 
we transfer the Cartesian coordinates of the input set into 
polar coordinates. The linearity of the polar coordinate set 
corresponds to the circularity of the original input set given a 
suitable center. We separately consider the circularity of 
ordered and unordered point sets. The circularity of unordered 
data is determined directly from the linearity measure, 
whereas the circularity of ordered data is derived by 
multiplying the unordered data circularity measure by a 
monotonicity factor. We discuss two ways of determining the 
center of the shape. The circularity measures are tested on a set 
of 25 curves. The proposed algorithms work on both open and 
closed curves, whereas all competing algorithms (except one) 
are linked with exclusively closed curves. The measures were 
compared with human measurements of circularity of the same 
set. The new methods are have been found to best correspond 
to human perceptions.  

I. INTRODUCTION 
We are interested in measuring how circular a finite set of 

points is. In analyzing various algorithms, we restrict 
ourselves to the following criteria. Circularity values are 
assigned to sets of points and these values shall be numbers 
in the range [0, 1]. The circularity measure equals 1 if and 
only if the shape is a circle. A shape’s circularity value 
should be invariant under similarity transformations of the 
shape, such as scaling, rotation and translation. The 
algorithms should also be resistant to protrusions in the data 
set. Circularity values should also be computed by a simple 
and fast algorithm. Circularity measures were discussed in 
[LS, DD, CKT, KA, P]. All of them are area based and 
linked to closed curves except for one: [P]. This one is shape 
based and can be applied to open curves.  

Here, we will propose and analyze shape based 
algorithms that assign circularity values to both open and 
closed curves, and to both ordered and unordered sets of 
points. These measures are adaptations of the linearity 
measures proposed in [SNZ]. These linearity measures are 
applicable since the input set of points to our circularity 
algorithms was transformed from Cartesian representation to 
polar representation, where highly circular input point sets 
become highly linear in the new representation, for a proper 
choice of center. We first consider measures for unordered 
point sets. The circularity of ordered sets is obtained by 
multiplying the unordered results by a monotonicity factor. 
The choice of center of each shape influences its overall 
circularity value. The center of each shape is traditionally 

seen as its center of gravity. We also consider another 
definition of shape center here.  

One of the main advantages of our algorithms is that they 
work on both open and closed curves because they are shape 
based rather than area based. Our algorithms were tested on a 
set of 25 shapes. The results are compared against existing 
measures, and human measurements.  

II. LITERATURE REVIEW 
The most used circularity measure is the well-known 

C=4πA/P2, where A is the area of the shape while P is its 
perimeter. It is scale independent. However, the border of an 
object may be highly irregular and the calculated value of C 
will then be very small and will not reflect the correct 
circularity measure, as observed in [DD].  

Di Ruberto and Dempster [DD] defined new circularity 
measures which are translation and scale invariant and are 
based on mathematical morphology. They [DD] make use of 
a distance function dist(p) associated with each pixel p, as the 
integer valued radius of the smallest circle which erodes p. 
The regional maxima of the distance function represents 
inner points of f located at the longest distance from the 
border of f. Let h=max{dist(p)} be the maximum distance 
function, then the V measure [DD] is defined as V=sum 
dist(p)/h3, which is the ratio of the volume of the generated 
shape of the distance function and the cube of the height of 
the same function. T measure is defined as T=A/h2 [DD], 
where A is the area of the object. The E measure in [DD] is 
E=h/sqrt(A). The V, T and E measures are sensitive to 
intrusions, since the intrusion affects h, the radius of the 
largest circle inside the shape. In the M measure in [DD], the 
distances from the center of gravity from the border in 
several directions (e.g. 8 or 16 cardinal directions) are 
calculated and the object deformity is calculated by the 
variance of these distances. This measure is not invariant to 
rotations and can produce a measure of 1 for non-circular 
objects.  

Proffitt [P] introduced measures for circularity and 
ellipticity on a digital grid. His circularity measure was based 
on taking the mean radius μr presumably from the center of 
gravity to each border pixel. The standard deviation σr of all 
such radii was also calculated. The proposed circularity 
measure was ( )21 rrP μσ−= . This is the only shape 
based measure that was found in literature.  

Lee and Sallee [LS] introduce a set of area based 
measures of circularity, triangularity, and rectangularity. 
Their circularity measure first separately calculates the 
intersection and union of the shape area S with the area of the 
circle C that best fits the shape. Their final circularity 



measure is the ratio of the areas of the intersection and union 
of S and C, (S∩C)/(S∪C).  

Kim and Anderson [KA] defined a compactness measure 
(which is a different name for a circularity measure) for 
convex sets as the ratio of the area of a convex region and the 
area of the smallest circle containing the region. The measure 
is then modified and applied to measuring the compactness 
of images with respect to digital disks. Both convex sets and 
digital disks are outside the scope of this research. They 
[KA] also observed that the perimeter calculation for digital 
arcs, where neighboring edges have lengths 1 or 2 , 
measure octagonality rather than circularity in images. A 
similar observation was made by Bottema [Bo] who then 
proposed a new digital circularity measure as the ratio 1-|A-
D|/|A|, where A is any discrete set and D is the discrete disk 
having the same area as A and the same center of mass. A – D 
is the set difference of A and D, ( DA ¬∧ ), and |X| is the 
number of pixels in X.  

Chatzis, Kaburlasos, and Theodorides [CKT] described 
an image processing method to automate the particle size and 
shape measurement procedure. The method is based on fuzzy 
mathematical morphology. It is applied to estimate the size 
and the shape of fertilizers particles produced in the fertilizer 
industry. The particles tend to be spherical as much as 
possible. Image thresholding (the threshold is the minimal 
value of the smoothed histogram of the grayscale image) is 
applied to separate fertilized pixels from the background. 
Connected components were then found, and the circularity 
of each component is estimated as follows. The area is the 
number of pixels that belong to the object. The perimeter of 
each object is computed using a method based on fuzzy 
mathematical erosion. Each object is eroded two times using 
a 3x3 square structuring element first, and then a 3x3 cross-
shaped structuring element. The perimeter is then estimated 
using the number of eroded pixels. The equal-area diameter 
of an object is defined as the diameter of a circle that has area 
equal to the area of the object. The circularity of an object is 
computed as the fraction between the equal-area diameter 
and another “equivalent diameter” computed as the diameter 
of an equal perimeter circle. The circle perimeter is 
calculated via the erosion based method. This circularity 
measure tends to the unit measure when the object tends to 
be a perfect circle. Note that this measure is in fact, similar to 
the square root of the traditional circularity measure. The 
difference is only that the perimeter is calculated differently.  

The measures that satisfy our conditions of being 
resistant to protrusions, while at the same time being 
invariant to scaling, translation and rotation are: C, P, LS and 
CKT. P is the only one that is shape based. Note that CKT in 
fact measures digital circularity, but is added here to 
approximate the circularity of ordered point sets when the 
points in the set are pixels with integer coordinates.  

Stojmenovic, Nayak and Zunic [SNZ] proposed 6 
linearity measurements for finite, planar point sets. Their 
measures are quickly calculated and are invariant to scale, 
translation or rotation. All of their methods give linearity 
estimates in the range [0, 1] after some normalization. We 
describe here only two out of six measures. Their Average 
Orientations measure takes k random pairs of points along 
the curve. It finds their slopes (m), and finds the normals to 
their slopes (-m, 1). These normals are averaged out, and the 
resulting normal (A, B) is deemed to be the normal to the 
orientation of the curve. The averaging is done separately for 

each vector coordinate. The measure of linearity is defined 
as 22 BA + . The contour smoothness measure was 
formed by taking triplets of points, and averaging out their 
triangular areas. Each triplet of points produced a smoothness 
value in the form of area/perimeter2. The maximum value 
for area divided by the triangle perimeter is 363 (for an 
equilateral triangle). After smoothness values are averaged to 
produce value sums, the result is adjusted as follows: 

336 sumssums = . The compliment of the obtained 
sums value was taken as a linearity value.  

III. MEASURING CIRCULARITY  
We will present our circularity measures for both ordered 

and unordered point sets here. The choice of center for each 
shape is an important factor in measuring circularity. We 
have used two methods for finding the center of each shape. 
The first method is the general center of gravity of the shape, 
which corresponds to a per-coordinate average value of each 
pixel in the shape. The true center finding method takes the 
median point value of k triplets sample points belonging to 
the curve. The results of all tests cases are presented in the 
next section.   

The linearity measures presented in [SNZ] were used to 
measure circularity here. We did not modify the measures 
themselves. Only the input to each measure was modified. 
The intended input for the linearity functions was an array of 
n Cartesian pixel coordinates in the form (xi, yi). The 
Cartesian pixel array was transformed into an array of polar 
coordinate pixels. Points are transferred from Cartesian 
coordinates to Polar coordinates as follows: Point (x, y) in 
Cartesian form would be represented 
by x 2 + y 2 , arctan y x( )( ), in polar form. This form of 

point representation is beneficial since circular objects whose 
points are transferred to polar coordinates appear linear when 
these points are mapped. Figure 1 shows a circle with radius 
r drawn in planar Cartesian coordinates, and its 
corresponding polar representation on the right.  

 
Figure 1.  Cartesian and polar representations 

The linearity measures of [SNZ] were used to measure 
the circularity of polar coordinate input sets. The algorithm 
that was used to test circularity of a planar set of points with 
a general linearity method X is presented below. 

Input:  array of points: Points = (Xi, Yi), 1≤  i ≤ n; 
Find center of gravity (Xc, Yc) of set of points; 
Translate the set by (-Xc, -Yc) so that it is at the origin; 
Transform set to Polar Coordinates.   
X = linearity value of the polar coordinate set; 
M = Monotonicity of point set in polar coordinates; 
XM=X*M; 

Output:       Circularity X, Ordered Circularity MX; 
Monotonicity measures the behaviour of curves with 

respect to their orientation line. It is expected that monotonic 
curves define a more linear ordered set of points than non-



monotonic curves. Monotonicity is introduced to ‘correct’ 
the error made by using linearity measures for unordered 
sets. The algorithm works by taking N-4 pairs of points 
which are 4 positions apart. A vector v is found for each pair 
of points. Each v is multiplied by the orientation line vector 
of the whole set of points via a dot product. The orientation 
line is defined via central moments [C]. If the dot product is 
positive, the sign s of the magnitude mag of v is positive, 
otherwise it is negative. The sum of all s*mag is divided by 
the sum of the absolute values of all mag to form a 
monotonicity value. Monotonicity is multiplied by each 
linearity measure to make combined metrics that measure the 
linearity of ordered point sets.  

The trivial way of choosing a shape’s center is to take the 
per-coordinate average of all pixels, which is referred to as 
the center of gravity. This is the method that is usually 
chosen when measuring any shape property such as linearity 
or elongation. Choosing the appropriate center of a shape 
when measuring circularity is more delicate and heavily 
influences the result of the circularity measure. To illustrate 
this point, we turn to semi circular shape 20. Transferring the 
shape to polar coordinates with respect to the center of 
gravity would not yield a straight line, but rather a curved 
one. This might result in a lower circularity measure than 
expected for the given shape. In order to find the ‘true center’ 
of a shape, as opposed to its traditional center of gravity, we 
sampled k triplets of points from its point set. From each 
triplet, we found the center (Xtc, Ytc) that the points define. It 
is expected that each triplet of points will yield a different 
center (Xi, Yi). To choose a unique center for the shape, we 
individually sort the k center values per coordinate, and 
choose the median per coordinate value to be the true center, 
(Xtc, Ytc). We have experimented with both types of center 
finding methods in this work. 

IV. EXPERIMENTAL DATA 
The circularity algorithms were tested on a set of 25 non 

trivial shapes. These shapes were assembled by hand and are 
meant to cover a wide variety of non trivial cases. Each 
shape comprises between 300 and 700 pixels. All shapes are 
digital, which is why the circularity measures are not ideal.  

Four sets of measurements are presented here. One set is 
for the circularity measure where the center of the shape is 
chosen to be its center of gravity and the points are 
unordered, the next is the case where the center of gravity is 
chosen to be the ‘true center’ and the points are unordered, 
the third and fourth measures are identical to the first two 
except that the points of each shape are ordered. In order to 
get an idea of which measure best measures circularity, we 
compared them to human measurements of circularity. A 
group of 20 colleagues volunteered to give their analysis of 
the shapes in Figure 2. Each measure was correlated to the 
average human results to find the one that best models them. 
Figure 2 shows the test curves used in the circularity 
experiments.  

Table I holds the circularity values as measured by each 
method on unordered point sets. The actual measures are in 
the interval [0, 1], but they are presented as integers in the 
interval [0, 100] in the tables to save space. The AOC column 
refers to the Average Orientations Circularity measure that 
takes the center of gravity as the center of each shape. AOT is 
the average orientations circularity measure that adopts the 
‘true center’ method when calculating circularity. The CSC 

column refers to the Contour Smoothness Circularity 
measure that takes the center of gravity as the center of each 
shape. CST is the Contour Smoothness circularity measure 
that adopts the ‘true center’ method when calculating 
circularity. The P column shows the results of the measure 
proposed by [P], and the ‘center of gravity’ was used as the 
shape center. The CKT column shows the results of the 
measure proposed by [CKT]. LS is the circularity measure 
proposed by [LS]. The C column shows the results of the 
standard measure of circularity. The perimeter of each shape 
was calculated as in [KA]. The HM column depicts the 
average human perception of the circularity of each shape. 
The correlation values of each measure with human 
perception are found at the bottom of the table.  

 
Figure 2.  Circularity test set 

TABLE I.  CIRCULARITY  RESULTS FOR UNORDERED POINT SETS 

AOC AOT CSC CST P CKT LS C HM 
1 51 50 32 32 88 69 30 42 12 
2 86 83 61 59 98 91 72 78 77 
3 90 89 69 67 99 90 79 76 64 
4 74 70 38 36 94 62 53 36 61 
5 75 74 46 46 98 85 70 68 45 
6 77 71 51 48 98 36 67 13 40 
7 74 75 50 50 93 39 18 15 15 
8 81 80 69 70 92 77 95 55 97 
9 75 74 51 49 98 72 69 50 44 

10 76 77 48 48 97 29 64 10 53 
11 96 96 81 82 99 96 80 85 85 
12 99 99 90 98 100    94 
13 68 66 39 36 93    65 
14 9 88 30 83 82    0 
15 66 66 34 32 96 53 61 26 27 
16 100 100 98 99 100 99 98 93 100 
17 78 89 72 71 98 82 66 60 38 
18 59 66 35 40 98    12 
19 60 57 36 29 93    4 
20 75 99 61 95 93    62 



21 91 89 76 76 99 33 0 12 91 
22 76 86 64 77 94 44 12 21 56 
23 86 89 70 71 97 79 69 59 20 
24 45 44 31 20 90 52 41 25 29 

25 75 73 53 48 94    43 

cor 0.74 0.58 0.75 0.56 0.52 0.33 0.35 0.42  
 

We see that some of the entries in the CKT, LS and C 
columns are empty because these measures are not defined 
for open shapes. Even when omitting these open curves from 
consideration, we see that the first four measures more 
closely follow the average human measurements. 

Table II shows the results of the circularity measures as 
applied to ordered data. The AOM column represents the 
average orientations circularity measure multiplied by its 
corresponding monotonicity factor. AOTM shows the 
average orientation circularity considering the ‘true center’ of 
each shape, multiplied by the corresponding monotonicity. 
The CSM column represents the Contour Smoothness 
circularity measure multiplied by its corresponding 
monotonicity factor. CSTM shows the Contour Smoothness 
circularity considering the ‘true center’ of each shape, 
multiplied by the corresponding monotonicity. Column PM 
shows the P circularity measure multiplied by the 
monotonicity values of each shape. This is the only other 
measure, apart from our own, that monotonicity was 
applicable to since other existing measures area based, where 
the order of the pixels is not defined. The other measures are 
area based, and monotonicity cannot be calculated for them. 
The monotonicity values, with respect to the center of gravity 
of each shape, are seen in column MON. The HMM column 
shows the average human measurements of circularity 
considering the monotonicity of shapes.  

TABLE II.  CIRCULARITY  RESULTS FOR ORDERED POINT SETS 

 AOM AOTM CSM CSTM PM MON HMM 
1 51 42 32 27 88 1.00 8 
2 86 83 61 59 98 1.00 75 
3 90 89 69 67 99 1.00 63 
4 23 23 12 12 30 0.32 20 
5 75 74 46 46 98 1.00 38 
6 74 68 49 46 93 0.95 30 
7 30 30 20 20 38 0.41 8 
8 28 28 24 25 32 0.35 80 
9 75 74 51 49 98 1.00 36 

10 76 77 48 48 97 1.00 37 
11 96 96 81 82 99 1.00 87 
12 35 25 32 24 60 0.60 93 
13 8 9 5 5 12 0.12 54 
14 0 1 0 1 10 0.13 1 
15 66 65 34 32 96 1.00 25 
16 100 100 98 99 100 1.00 100 
17 64 30 59 24 81 0.82 46 
18 5 8 3 5 24 0.25 10 
19 2 0 1 0 3 0.04 4 
20 28 0 22 0 93 1.00 65 
21 29 30 24 26 32 0.32 38 
22 31 41 26 37 38 0.41 26 

23 86 89 70 71 97 1.00 23 
24 21 2 14 1 42 0.47 16 

25 7 7 5 5 9 0.10 16 

cor 0.49 0.43 0.61 0.55 0.44   
 

Considering both tables seen above, we can say that the 
circularity of unordered sets is much more easily agreed upon 
by both humans and computers. One of the most unexpected 
results that occurs in our measurements is the circularity 
value of shape 14 when measured by the AOT and CST 
methods. The resultant circularity is extremely high (0.88) 
for a straight line segment. The reason this happens is that 
the ‘true center’ for such a line segment is found to be vary 
far away from the point set. This line is highly non-circular, 
as confirmed by the human measurements, yet the true center 
assigned to it makes it seem part of a large circle, and hence 
drastically upgrades its circularity value. In order to avoid 
such discrepancies, the shape must cover a larger percentage 
of the overall circle to be considered circular.  

Calculating all of the new measures was done very 
quickly on a 2.4 GHz AMD Athlon platform. The results of 
both tables are generated in less than 1 second by the 
computer.  

Overall, the measure that best correlated with human 
perception on unordered point sets was SCS. For ordered 
sets, CSM proved most compatible. Aside from our own 
proposed method, the P measure was the closest competitor 
from the literature.  

V. CONCLUSION 
Recently, there have been several applications that 

concentrate on finding circular objects in images. They range 
from identifying onions in gardens, to finding tires on cars 
when seen from the side. Future applications might include 
identifying individual cells based on their boundaries in 
medical imaging.  
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