

Abstract— This paper describes a new line segment detection
and extraction algorithm for computer vision, image
segmentation, and shape recognition applications. This is an
important pre processing step in detecting, recognizing and
classifying military hardware in images. This algorithm uses a
compilation of different image processing steps such as
normalization, Gaussian smooth, thresholding, and Laplace
edge detection to extract edge contours from colour input
images. Contours of each connected component are divided
into short segments, which are classified by their orientation
into nine discrete categories. Straight lines are recognized as
the minimal number of such consecutive short segments with
the same direction. This solution gives us a surprisingly more
accurate, faster and simpler answer with fewer parameters
than the widely used Hough Transform algorithm for detecting
lines segments among any orientation and location inside
images. Its easy implementation, simplicity, speed, the ability to
divide an edge into straight line segments using the actual
morphology of objects, inclusion of endpoint information, and
the use of the OpenCV library are key features and advantages
of this solution procedure. The algorithm was tested on several
simple shape images as well as real pictures giving more
accuracy than the actual procedures based in Hough
Transform. This line detection algorithm is robust to image
transformations such as rotation, scaling and translation, and
to the selection of parameter values.

Keywords— Line detection, edge image, segmentation, images
contours, linearity, shape recognition.

I. INTRODUCTION
 straight line is the simplest basic shape and it is the
topic of discussion here. Digital straight lines are image
representations of straight lines. More precision would

even require adding ‘segments’ to their full name: digital
straight line segments. For brevity, they will be called
simply lines in this article. Lines are one of the most
common elements in images: indeed many basic shapes such
as triangles, trapezoids, parallelograms, etc are composed of
lines. They can be found in every human-made structure and
picture. Once detected, they can be used as tools to identify

Andres Solis Montero is with School of Information Technology &

Engineering, University of Ottawa, Canada (email: asolis@ site.uottawa.ca).
Amiya Nayak is with School of Information Technology & Engineering,

University of Ottawa, Canada (email: anayak@site.uottawa.ca).
Milos Stojmenovic is with School of Information Technology &

Engineering, University of Ottawa, Canada (email:
mstoj075@site.uottawa.ca).

Nejib Zaguia is with School of Information Technology & Engineering,
University of Ottawa, Canada (email: zaguia@site.uottawa.ca).

more complex objects such as tanks or aircraft in images
generated by satellites or unmanned aerial vehicles.

The problem of line detection and extraction in images
has important applications in the fields of computer vision
and image processing. Images are usually a composition of
basic shapes; all of them together give us a sense of objects
that can be recognized by humans. Combinations of basic
shapes such as lines, squares, triangles, circles, ellipses
among others create complex shapes that characterize real
objects.

 Lines are special cases of edges (or digital edges), which
represent object boundaries and sharp changes in pixel
colours or intensities in images. Edge detection is an
important and well studies topic in literature. Canny [1],
Sobel [2] , and Laplace [3] are some of the most known and
used algorithms for extracting edges in digital image
processing.

 Our main goal is to find an algorithm capable of detecting
significant line segments in images. It will show connected
segments or portions of edges that can be considered as
(straight) line segments, including their endpoints. These
segments would help us recognize basic shapes in the image
(this topic is out of the scope of this article). For example,
for an image in Fig. 1a), our desired output is in Fig. 1b)
which, in this case, rightly corresponds to the polygonization
of the shape that is polygonal.

Fig.1. a) Original Image; b) Output of our proposed LDC algorithm; c) the
Hough transform line detection algorithm output; and d) its OpenCV
implementation, Hough lines output, which detects line segment endpoints.

We follow 3E principle in our design: easy (to
understand), effective (return accurate results), and efficient
(fast), and managed to describe on such algorithm.

The existing literature on line detection concentrates
around Hough transforms algorithms and its variants. They

Robust Line Extraction Based on Repeated Segment Directions on

Image Contours
Andres Solis Montero, Amiya Nayak, Milos Stojmenovic, Nejib Zaguia

A

Proceedings of the 2009 IEEE Symposium on Computational Intelligence
in Security and Defense Applications (CISDA 2009)

978-1-4244-3764-1/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

require a pre-processing step (sophisticated Canny edge
detector) to convert an input colour image to a binary image.
OpenCV library has only one algorithm for line detection,
which is Hough transform based. Hough transform based
algorithms detect lines, not just line segments, as shown in
Fig. 1c). An extra step is required to retrieve the line
segment in the image instead of a whole line across the
image. An OpenCV extension of HT to produce connected
line segments with endpoints is called Hough Lines (HL),
see Fig. 1d). However, the outcome in this example is not
‘polygonal’ as two consecutive line segments are often
disconnected. Our study shows that HL is not fully effective.

Our new algorithm, called LDC, finds connected
components of detected edges, and produces connected
lines, see Fig 1-b. In other examples we also demonstrated
that LDC has visually better results than HL (effective
algorithm). We process the input image with normalization,
Gaussian smooth, Laplace edge detection, and thresholding.
These steps will produce a binary image representing the
edges of the object inside the image. Connected components
are extracted from binary image. We then extract the
consecutive boundary pixels from each connected
component that create the contours of the image. Contours
are divided into short segments, which are classified by their
orientation into 9 discrete categories. Finally, line segments
are detected by finding consecutive sequences of segments
of similar slope.

We made two important changes compared to HL. The
extraction of edges from color image is done using much
simpler Laplace operator instead of sophisticated Canny
edge detector from OpenCV. HL maps every pixel of every
edge to a curve in dual space and recognizes significant
accumulation. Our line recognition from edges is based on
the linearity of a series of consecutive short segments of an
edge, along its contour. Contours are a sequence of
consecutive boundary pixels that describe outer edges and
forms for any shape and object. We did not find any line
detection algorithm in literature that is based on contour
traversal. Both steps are greatly simplified in our LCD
algorithm, and we give its full description here, showing
also its easiness to understand.

LCD is somewhat faster than the Hough Line algorithm.
More precisely, extracting edges from input image takes
similar time. Our LCD algorithm is much faster in extracting
line segments from edges than Hough lines solution. It is
therefore an efficient (fast) solution.

Our new Line Detection Algorithm using Contours
(called the LDC algorithm) is explained in Section III. It
covers each step involved in the process in order to retrieve
the line segments from true colour images. Section IV is
dedicated to the experimental results of the comparison
between LDC and the built-in Hough Lines (HL) OpenCV1
implementation. This test among the algorithms is realized
over a set of 30 random images with different resolution

1 OpenCV (Open Source Computer Vision) is a computer vision library

originally developed by Intel. It is free for commercial and research use
under a BSD license.

sizes. The two tests realized for the built-in OpenCV Hough
transform based algorithm, uses a probabilistic Hough
transform variant [12]. It returns line segments rather than
the whole lines. This variant is more efficient that the classic
Hough Lines algorithm [12]. Conclusion and references
complete this article.

II. RELATED WORK
There are a number of schemes studying whether or not

an edge is a line. For example, several schemes for
measuring linearity of point sets (edge pixels) are described
in [11]. However, if two or more lines are located on the
same connected edge, these algorithms do not discover
them.

Our literature review identified only one widely used line
detection approach, the Hough Transform [4] method. This
method maps points (pixels) from their Cartesian image
space (x, y) extracted by an edge detecting operator to a
curve in polar coordinates (r,). OpenCV uses the transform
where r are are the distance from the origin, and the angle
of the normal to a line passing through (x, y), respectively.
These polar coordinate curves create accumulations of
points in this space, of which local maxima values
correspond to existing lines in the image. This method uses
high complexity operations like sine and cosine calculations
for each pixel. The other methods are mostly variations and
extensions [1][5] of this classical one, mostly to improve
their execution time. Other implementations utilize a
convolution matrix and eigenvalue analysis of pictures [6].
Hough Lines uses a progressive probabilistic Hough
Transform (PPHT [15], [17]) in order to considerably
reduce the computation needed from the classical method
and also give information on segment endpoints. Only a
fraction of the points are accumulated, and a maximum gap
parameter between lines segments is applied to connect
otherwise isolated pixels into connected line segments.
Other parameters include minimum gap between segments,
minimal length of line segments and parameters related to
the accumulator space.

III. LINE SEGMENT DETECTION AND LINEARITY

This section will cover our LDC (Line Detection from
Contour) algorithm in order to retrieve straight line
segments from colour images with linear execution time in
number of pixels in the image. The algorithm was
implemented with OpenCV and EmguCV 2 using the C#
language on the .Net platform. The experimental comparison
results data between LDC and the two tests of the OpenCV
built-in Hough Line algorithm – HL1 and HL2- are in the
following Section IV.

2 EmguCV is an Open Source cross platform – Gnu Linux, Mac, and

Windows - .Net wrapper to the Intel OpenCV image-processing library.
Allowing OpenCV functions to be called from .NET compatible

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

A. Overview of the LDC Algorithm
Our algorithm uses any (colour) image as input and

produces a set of linear segments as output. Each segment is
defined by two integer points (x0, y0) and (x1, y1) in the
image following a discrete linearity criteria classification.
More precisely, the input of our algorithm consists of: the
true colour image (of any resolution) and 5 configuration
parameters (to be discussed in appropriate sections). They
are labelled as follows:

 Normalize (N),
 Gaussian kernel size (GKS),
 Laplace aperture size (LAS),
 Threshold (TH), and
 Minimum length contour (MLC).

The output of our LDC algorithm is a list of recognized
connected lines in the image, each with its beginning and
ending pixels, and all the intermediate pixels, with single
pixel width. Consecutive line segments share endpoint.

In order to retrieve these segments, image processing
algorithms that are commonly used in computer vision are
applied to the images. Our LDC Algorithm is composed of 7
steps: Gray scale conversion, Normalization, Gaussian
Smooth, Laplacian operator, Threshold, Contours
Extraction, and Segmenting Contours. The first 6 steps used
are well known image processing algorithms and the last
step, Segmenting Contour, is our implementation to extract
straight line segments of the objects inside the image. It is
the main novelty of this article.

The first step of our algorithm (conversion from colour to
gray scale image) doesn’t use any configuration parameter.
Normalize (N) is a Boolean parameter which decides
whether or not we want to apply normalization process to
the input image. GKS and LAS are the sizes of the
Gaussian’s and Laplace’s kernels, respectively, to convolute
the image. TH is the intensity value used to extract the edges
after the Laplace filter was applied, and therefore it produces
binary image as its output. Finally the MLC is the minimum
amount of pixels that a contour must have to be accepted as
a line in our final Segmenting Contour step.

We will first briefly describe the main idea. The colour
input image is passed through several image processing
algorithms. The image is converted to gray scale; possibly
normalized, smoothed, edges are extracted and thresholded
to produce a binary image input. Contours are then created
for each candidate edge. After these steps, we scan the list of
points of the contours with time complexity O(n) (where n
is the total number of pixels in all of the contours), looking
for segments, or sections of the list of pixels which gives the
notion of linearity. The final result will be a list of line
segments; each segment will be represented by a starting and
ending pixel position in the image space.

B. Edge Detection from colour images
Our first step is to convert the input colour image to a

gray scale image using CvGray, which is an OpenCV built-
in function [10]. The value of the gray pixel is a number

between 0 and 255 and it’s computed as the 29.9% of the
red component, 58.7% of the green, and 11.4% of blue
channel of the same pixel in the input image [9][12].

The normalization procedure is optional in our algorithm.
If N is ‘true’ then the image is normalized to the range
[0,255]. For example, if the input image has intensity range
[70,201], normalization is done by first subtracting 70, then
multiplying by 255/201 and rounding. Edge detection may
be difficult if the image is affected by illumination problems,
and normalization creates higher intensity contrasts.
However sometimes it may be somewhat detrimental,
introducing noise in the image.

The next two steps, Gaussian smooth and Laplace edge
detection are implemented by convoluting the image
(applying an appropriate filter) [13] [12]. The Gaussian
smooth step is used to remove noise in the image and leave
only the main contours. This blur process has the property of
reducing noise and leaving the more important boundaries of
the object in the image. The Gaussian kernel matrices for
computing the Gaussian blur/smooth are defined by their
size (small odd number GKS between 1 and 19).

Fig.2. Edge detection algorithm examples: Laplace, Canny and Sobel. We
applied a binary threshold to each image for better view of the edges.

After several tests on edge detection algorithms like
Sobel, Canny, Predefined Convolution kernels, and the
Laplacian operator, we found that the Laplacian operator
was the one that produced the best results for our goal. It
had sharper edges describing the boundaries of objects. This
is illustrated on an example in Figure 2. Also, it only has one
parameter to configure, the aperture size of the kernel, to
apply to the image. This aperture size parameter LAS must
be 3, 5 or 7 [12], and defines k x k kernel for k = LAS. This
method will make the image zones brighter where edges are
found.

After these steps, we apply a binary threshold TH to
create a binary image. All the pixels with intensity values

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

greater than or equal to TH become white, representing
brighter areas in the image (edges). The other pixels become
black.

C. Extracting Contours
We then retrieve the list of all contours, external and

internal using the findContours method of the OpenCV
library. Contours are a list of sorted point’s pixels inside the
image where each pixel has information about the next
neighbouring point. These contours surround the different
white connected components in the binary input image.
Because of the complex object we might find inside an
image, we are going to retrieve all the internal and external
contours in order to analyse them. The points inside the
contours are clockwise oriented. As part of our algorithm,
we introduced a threshold parameter MLC, to consider only
contours with at least MLC pixels. It will filter out too short
lines.

D. Repeated Segment Directions on Image Contours
Our algorithm for this step identifies line segments with

any orientation inside the contours in time complexity O(n),
where n is the number of points in the contours we are
analysing. Therefore, this final step does not compromise
the execution time for the whole line segment detection
algorithm. The total time complexity is dominated by the
pre-processing steps that require processing of every pixel in
the image, and has time complexity O(r2), where r is the
number of rows/columns in the image.

1) Overview of the algorithm: Our next and final step is to
analyse the list of points on each contour in order to find
straight lines under a discrete linearity criterion. This
produces an incomplete polygonization: the pixels not
recognized as part of any line as dropped, while others are
listed as line segments between two endpoints.

We will process the contour in the order given by the
OpenCV built-in findContours algorithm. Each contour is
divided into fragments. Each fragment contains
consecutive pixels. Neighbouring fragments share
endpoints. A line segment consists of several consecutive
fragments. Some fragments will not be associated with any
line segment, and each fragment may be part of only one
line segment. In our implementation, we used a fragment
size of =5 pixels. The rest of the description is dependent
on this choice; other choices require designing appropriate
fragment classification scheme before detecting line
segments. Because of sharing endpoints, each fragment has

+1 pixels, including endpoints.
Our algorithm will classify each fragment using its slope,

and will then attempt to identify repeated patterns of the
same slope to create a (straight) line segment. A segment
will keep all the information about the contour pixels and
two main points: the starting pixel (x0, y0) and the ending
pixel (x1, y1). These endpoints are the first pixel of the first
fragment and the last pixel of the final fragment in detected
line segment. Each fragment will be classified according to

its slope into nine possible categories 0-8. This produces an
integer sequence of line slopes for further processing.

2) Slope classification and fragmentation: Our
classification is shown in Figure 3. Diagonal lines are
discretized to produce a division of an 11x11 matrix into 9
areas, labelled 0-8. The central 3x3 region is labelled 0 and
represents class 0. Classes 1-8 correspond to eight
approximate directions respectively: east, south-east, south,
south-west, west, north-west, north, and north-east. Each
fragment is classified in the following way. The beginning
of the fragment is placed in the centre of the 11x11 matrix.
The fragment is classified according to the location of its
endpoint in this matrix, and receives the label associated
with it. Class 0 is a ‘neutral’ direction, or a lack of direction.
It represents fragments that do not make sufficient progress
in any direction, and can be treated as loops. This class was
introduced due to the irregularity and noise in the edge
detection steps. Progress with distances of at least 2 from the
center in one of the directions suffices to classify slopes into
one of the 8 classes. The location of intermediate pixels does
not impact the classification. Fig. 4 shows a fragment of
class 8, between two black pixels.

Figure 5 illustrates the classification process for
fragments. The six fragments shown are classified as 88828.
This representation will help us explain some of the criteria
above.

Fig.3. The 9 classes classification matrix used in our LDC algorithm.

Fig.4. Two black pixels inside the contours indicate the starting and ending
pixels of a fragment of class 8.

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

3) Merging Fragments into segments: The sequence of
fragment classification values will be further processed to
identify line segments, corresponding roughly to a sufficient
number of repeated fragment slopes. Our exact criteria to
detect line segments from fragments are:

A). A segment has at least X fragments of the same
slope classification.

B). Two segments with the same slope classification,
separated by less than X fragments with different
classification, will create a single segment with all
the fragments from and between both segments.

C). The 0 slope classification is a neutral position for
the algorithm. It will not interfere in the
classification of any segments; it will be treated as
being same class as the previous class in the
sequence.

D). If the starting fragment and final fragment of a
contour have the same classification then they join
in a same segment with length equal to the sum of
both.

Fig.5. Line sequence example of fragments produced by LDC algorithm.
Lines above the class number represent line segments recognized in the
patterns. The circled area represents how the matrix is used to classify them.

Our algorithm uses an X value of 3; this means that at
least 3 consecutive class values are needed to declare it a
segment. Fig. 6 shows some examples of extracting line
segments from sequences of classified fragments. In Fig.
6a), 4 lines segments are detected, based on rule A), repeated
patterns of 8 (line segment 888888), 1(line segment 11111),
5 (segment 555555), and 1 (segment 11111111),
respectively.

Fig. 6. Line segments extraction from sequences of classified fragments. In
example a) 4 line segments are extracted using rule A). Example b) uses

rules A) and C) extracting 3 line segments. Example c) extracts 2 line
segments using the rules A), B), and C).

In the Fig. 6b), the sequence 0000 is inserted into the
larger fragment 333333000033, using rule C). Similarly, 0,
00, and 0 are inserted into 5555 to produce line segment
50500505. Since the endpoint of fragment of class 0 is a
neighbour of its starting point (distance 1), this naturally
corresponds to a continuation of the same line segment,
ignoring some ‘noise’ around some pixels.

In Fig. 6c), rule B) is applied to produce a single segment
111112211111341111 out of the initially produced
segments 11111, 11111 and 1111, since the inserted 22 and
34 which are used to merge them are shorter than minimal
length X=3 needed to ‘break’ the sequence. In the same row,
500 is also declared a line segment (rule C). This
corresponds to the current implementation and is subject to
discussion, and can be changed later. We opted to preserve
simplicity and to allow segment extensions by single pixel
distances per fragment. It can be also perceived as line
segments with somewhat shorter length than the minimal
specified which does not necessarily mean erroneous
classification.

The accuracy of any line detection algorithm is evaluated
by subjective judgment. Nevertheless the appealing results
are hard to deny. Fig. 7 shows the output for one input
example. More examples are in Fig. 8.

Fig.7. Line Segments detected by LDC from two tank pictures. Fig 7a) is a
real photo and b) is a 3D model of a tank.

IV. EXPERIMENTAL DATA
We compared our newly proposed LDC algorithm with

what appears to be a widely accepted way to extract line
segments in literature using the OpenCV library. Since the
Canny edge detector was regularly associated with the
Hough Lines [13], the comparison was made with the GCH
algorithm, which represents a sequence of Gray Scale +
Canny + HL (the OpenCV built-in PPHT Hough Lines)
algorithm. In this implementation we used the Open Sources
OpenCV 1.0 library and the EmguCV 1.2.2.0 project, .Net
wrapper to OpenCV, and the C# language. The complete

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

experiment was tested under a 32 bits Intel Mobile 2.0 GHz
CPU technology with 1 GB RAM laptop.

Our goal was to measure the processing time and the sets
the lines detected by both algorithms. Processing time was
compared separately for two steps: from colour image to
edge extraction, and from edge to line segment extraction.
Both LDC and GCH are then divided into corresponding
parts. LDC=GB+CS, where GB stands for the sequence of
Gray scale conversion from colour images, normalization,
Gaussian smooth, Laplacian operator and binary
thresholding, and CS is a sequence of contour extraction
(which includes finding connected components) and
segmenting contours. GCH=GC+HL consist of GC (Gray
scale conversion followed by Canny edge detection) and HL
(Hough Lines algorithm) which doesn’t use connected
components or contours to extract lines and instead maps
some pixels to the dual accumulator space.

Fig. 8. Examples b), c), d), e), and g) are from the 30 image set used in the
experimental data. The amount of lines detected by LDC is 46, 22, 24, 26,
160, and 54 respectively. Two parameter choices HL1 and HL2 had 13, 34,
28, 40, 62, and respectively 10, 12, 13, 82, 65 lines. Examples a) and f)

show us real pictures processed for the algorithms and how our solution is
closer to human classification.

The outcome of HL (and consequently GCH) was very

sensitive, for all images, to the parameter choices. Even
small changes in some parameters have led to quite different
number of lines detected. Human intervention for obtaining
satisfactory outcome in HL was essential and time
consuming. Larger number of parameters in GCH also
contributed to this. The best set of parameter values is
picture dependent. For fairer comparison, we included two
parameter choices in GCH for each of 30 selected pictures
(24 bit-depth, 96 dpi), and only one for LDC. One obvious
observation from this exercise was that LDC proved to be
significantly more robust solution than GCH, due to
significantly less sensitivity of the outcome to changes in
parameter values. The picture set selected consisted of
colors depth images with both planar shapes and real
environment pictures. The spatial resolution of these images
ranges from 256x256 to 2048x1536. Here we show average
results for the set of 30 images.

The mean processing time of our LDC algorithm was 0.11
seconds with 0.11±0.04 of a 95% confidence level. The
GCH mean was 0.15 seconds, with and 0.15±0.05 95%
confidence interval. Therefore there exists a small but
statistically insignificant difference in favour of our LCD
algorithm since the confidence intervals overlap.

The next comparison measured processing times starting
from binary images. Our CS is about twice faster than the
competing HL algorithm, and the difference is statistically
significant. The average processing time of CS was 0.03
seconds, with 95% confidence interval of 0.03±0.015. The
corresponding means and confidence intervals for HL were
0.07 seconds, and 0.07±0.028, respectively. The processing
dominant times to convert color image to binary were
identical: 0.08±0.029 for GB and 0.08±0.025 for GC.

Our next and most important experiment compared the
accuracy of the line detection process. Figure 8 shows 7 out
of 30 images from our experimental set. In some examples
the actual number of lines is obvious. Images in Fig 8c), d),
e), and g) have 12, 13, 80 and 27 lines respectively, and our
LDC algorithm retrieves exactly twice as many lines (24, 26,
160 and 54) because of easily removable duplication. The
number of lines extracted by the GCH is quite different,
sensitive to parameter choices, and in disagreement with
human observation, mostly due to missing many line
segments. Human classification might yield about 20 line
segments for Fig. 8b). LDC retrieves 46 (or 23 actual ones),
while two parameter choices for GCH yielded only 13 and
10 lines, despite the edges being intuitively obvious. The
LDC algorithm also produces more appealing line segments
for the car in Fig. 8f) and cellular phones in Fig. 8a)
compared to GCH Hough transform based algorithm.
Overall, better results for our method were obtained for
every image from our set.

Finally, we computed the linearity SNZ [11] value for
each of the line segments detected by LDC in the image set.
The SNZ linearity value range is from 0 to 1 where values

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

nearest to 1 mean highly linear. The value is computed
based on coordinates of each pixel from a given line
segment. Because of discretization, perfect 1 scores are
rarely possible. The 95% confidence interval for the
linearity values was 0.970335 ±0.006729754. This shows
that detected line segments are indeed representing lines,
with almost perfect linearity score and consequently small
deviation.

V. CONCLUSION
There is no widely accepted criterion for judging whether

or not an edge is a (straight) line. The judgment is subjective
or is based on usefulness in a particular application. We
demonstrated that our algorithm achieves better accuracy in
terms of the stated problem, and are closer to human
classification than the Hough Lines algorithm for different
input parameter configurations. Although Hough transform
might be a simple algorithm to compute lines theoretically,
it’s not so simple in practice. Our algorithm doesn’t need
high complexity operations like sine and cosine, and finding
local maxima points in the accumulation space. The creation
of the accumulator space is a time consuming process, since
each pixel is converted to a digital line. Our algorithm is
considerably simpler to implement and understand, and is
faster, especially in the line extraction step.

Our LDC solution appears also robust to any orientation
and slope and invariant to image transformations such as
scaling, rotation and translation. LDC also has smaller set of
parameters. Compared to HL, the set of parameters used in
LDC is more predictable and can be applied almost
independently on an input picture, while HL requires fine
tuning of parameters for each picture to arrive at satisfactory
line extraction.

LCD algorithm can be further improved. Eliminating
duplicate lines is easy. There are some pathological cases;
for example, stair like structure may be declared a single
line. The rules for accepting a line could be fine-tuned,
including the change of variable X for minimal number of
fragments to make a segment. The fragment size may be
increased and more directions could be considered. The
insertion of neutral fragments into a line may be
reconsidered. This and other improvements are left for the
future work.

REFERENCES
[1] Canny, John. “A Computational Approach to Edge Detection”. IEEE

Trans. Pattern Analysis and Machine Intelligence. Vol 8, pp: 679-
714. 1986.

[2] Sobel, Irwin. Feldman, Gerald. "A 3x3 Isotropic Gradient Operator
for Image Processing". Unpublished 1968, cited orig. in Pattern
Classification and Scene Analysis. Duda, Richard O. Hart, Peter E.
Wiley, pp: 271. 1973.

[3] Gonzalez, Rafael C. Woods, Richard E. “Digital Image Processing”
3rd edition. Prentice Hall Inc, pp: 976. 2007.

[4] Duda, Richard O. Hart, Peter E. “Use of the Hough Transformation
to Detect Lines and curves in pictures”. Comm. ACM. Vol 15, pp:
11-15. 1972.

[5] Fernandes, Leandro A. Oliveira, Manuel M., "Real-time line
detection through an improved Hough transform voting scheme".
Pattern Recognition. Vol 41, issue 1, pp: 299–314. 2008.

[6] Guru, D. S. Shekar, B.H. Nagabhushan, P. “A simple and robust line
detection algorithm based on small eigenvalue analysis”. Pattern
Recognition Letters. Vol 25, issue 1, pp: 1 – 13. 2004.

[7] Marr, David. Hildreth, Ellen.C., “Theory of Edge Detection”.
RoyalP(B-207), pp: 187-217. 1980.

[8] Goshtasby, Arthr A. “2-D and 3-D Image Registration “. Wiley-
IEEE, pp: 280. 2005.

[9] Qiu, Peihua. “Image Processing and Jump Regression Analysis”.
John Wiley and Sons, pp: 305. 2005.

[10] Bradski, Gary. Kaehler, Adrian. “Learning OpenCV: Computer
Vision with the OpenCV Library”. O’Reilly, pp: 555 2008.

[11] Stojmenovic, Milos. Nayak, Amiya. Zunic, Jovisa. “Measuring
linearity of planar points sets”. Pattern Recognition 41, pp: 2503-
2511 2008.

[12] Emgu CV project API Reference and Documentation. [Online]
Available: http://www.emgu.com/wiki/index.php/Main_Page.

[13] Shapiro, Linda. Stockman, George. “Computer Vision” 1st edition.
Prentice-Hall Inc, pp: 608. 2001.

[14] Martí, Joan. Benedi, Jose M. Mendoza, Ana M. Serrat, Joan. “Pattern
Recognition and Image Analysis” 3rd Iberian Conference, IbPRIA.
2007.

[15] Kiryati, Nahum. Eldar, Yuval. Bruckstein, Alfred.M. “A probabilistic
Hough transform”. Pattern Recognition. Vol 24, issue 4, pp: 303 –
316. 1991.

[16] Suzuki, Kenji. Horiba, Isao. Sugie, Noboru. “Linear-time connected-
component labeling based on sequential local operations”. Computer
Vision and Image Understanding. Image Underst. Vol 89, issue 1, pp:
1-23. 2003.

[17] Chang, Fu. Chen, Chun-Jen. Lu, Chi-Jen. “A linear-time component-
labeling algorithm using contour tracing technique”. Computer
Vision and Image Understanding. Vol 93 issue 2, pp: 206-220. 2004.

[18] Galambos, C. Matas, J. Kittler, J. “Progressive Probabilistic Hough
Transform for line detection”. Computer Vision and Pattern
Recognition. Vol. 1, pp: 554-560. 1999.

Authorized licensed use limited to: University of Ottawa. Downloaded on December 19, 2009 at 06:54 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

