
 
 

 

 

Abstract— This paper describes a new line segment detection 
and extraction algorithm for computer vision, image 
segmentation, and shape recognition applications. This is an 
important pre processing step in detecting, recognizing and 
classifying military hardware in images. This algorithm uses a 
compilation of different image processing steps such as 
normalization, Gaussian smooth, thresholding, and Laplace 
edge detection to extract edge contours from colour input 
images. Contours of each connected component are divided 
into short segments, which are classified by their orientation 
into nine discrete categories. Straight lines are recognized as 
the minimal number of such consecutive short segments with 
the same direction. This solution gives us a surprisingly more 
accurate, faster and simpler answer with fewer parameters 
than the widely used Hough Transform algorithm for detecting 
lines segments among any orientation and location inside 
images. Its easy implementation, simplicity, speed, the ability to 
divide an edge into straight line segments using the actual 
morphology of objects, inclusion of endpoint information, and 
the use of  the OpenCV library are key features and advantages 
of this solution procedure. The algorithm was tested on several 
simple shape images as well as real pictures giving more 
accuracy than the actual procedures based in Hough 
Transform.  This line detection algorithm is robust to image 
transformations such as rotation, scaling and translation, and 
to the selection of parameter values. 
 
Keywords— Line detection, edge image, segmentation, images 
contours, linearity, shape recognition. 

I. INTRODUCTION 
 straight line is the simplest basic shape and it is the 
topic of discussion here. Digital straight lines are image 
representations of straight lines. More precision would 

even require adding ‘segments’ to their full name:  digital 
straight line segments.  For brevity, they will be called 
simply lines in this article. Lines are one of the most 
common elements in images: indeed many basic shapes such 
as triangles, trapezoids, parallelograms, etc are composed of 
lines. They can be found in every human-made structure and 
picture. Once detected, they can be used as tools to identify 
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more complex objects such as tanks or aircraft in images 
generated by satellites or unmanned aerial vehicles.    

The problem of line detection and extraction in images 
has important applications in the fields of computer vision 
and image processing. Images are usually a composition of 
basic shapes; all of them together give us a sense of objects 
that can be recognized by humans. Combinations of basic 
shapes such as lines, squares, triangles, circles, ellipses 
among others create complex shapes that characterize real 
objects.  

 Lines are special cases of edges (or digital edges), which 
represent object boundaries and sharp changes in pixel 
colours or intensities in images. Edge detection is an 
important and well studies topic in literature. Canny [1], 
Sobel [2] , and Laplace [3] are some of the most known and 
used algorithms for extracting edges in digital image 
processing. 

 Our main goal is to find an algorithm capable of detecting 
significant line segments in images.  It will show connected 
segments or portions of edges that can be considered as 
(straight) line segments, including their endpoints. These 
segments would help us recognize basic shapes in the image 
(this topic is out of the scope of this article). For example, 
for an image in Fig. 1a), our desired output is in Fig. 1b) 
which, in this case, rightly corresponds to the polygonization 
of the shape that is polygonal.  

 
Fig.1. a) Original Image; b) Output of our proposed LDC algorithm; c) the 
Hough transform line detection algorithm output; and d) its OpenCV 
implementation, Hough lines output, which detects line segment endpoints.  

We follow 3E principle in our design: easy (to 
understand), effective (return accurate results), and efficient 
(fast), and managed to describe on such algorithm. 

The existing literature on line detection concentrates 
around Hough transforms algorithms and its variants. They 
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require a pre-processing step (sophisticated Canny edge 
detector) to convert an input colour image to a binary image. 
OpenCV library has only one algorithm for line detection, 
which is Hough transform based. Hough transform based 
algorithms detect lines, not just line segments, as shown in 
Fig. 1c). An extra step is required to retrieve the line 
segment in the image instead of a whole line across the 
image. An OpenCV extension of HT to produce connected 
line segments with endpoints is called Hough Lines (HL), 
see Fig. 1d). However, the outcome in this example is not 
‘polygonal’ as two consecutive line segments are often 
disconnected. Our study shows that HL is not fully effective. 

Our new algorithm, called LDC, finds connected 
components of detected edges, and produces connected 
lines, see Fig 1-b. In other examples we also demonstrated 
that LDC has visually better results than HL (effective 
algorithm). We process the input image with normalization, 
Gaussian smooth, Laplace edge detection, and thresholding. 
These steps will produce a binary image representing the 
edges of the object inside the image. Connected components 
are extracted from binary image. We then extract the 
consecutive boundary pixels from each connected 
component that create the contours of the image. Contours 
are divided into short segments, which are classified by their 
orientation into 9 discrete categories. Finally, line segments 
are detected by finding consecutive sequences of segments 
of similar slope. 

We made two important changes compared to HL. The 
extraction of edges from color image is done using much 
simpler Laplace operator instead of sophisticated Canny 
edge detector from OpenCV. HL maps every pixel of every 
edge to a curve in dual space and recognizes significant 
accumulation. Our line recognition from edges is based on 
the linearity of a series of consecutive short segments of an 
edge, along its contour. Contours are a sequence of 
consecutive boundary pixels that describe outer edges and 
forms for any shape and object. We did not find any line 
detection algorithm in literature that is based on contour 
traversal. Both steps are greatly simplified in our LCD 
algorithm, and we give its full description here, showing 
also its easiness to understand. 

LCD is somewhat faster than the Hough Line algorithm. 
More precisely, extracting edges from input image takes 
similar time. Our LCD algorithm is much faster in extracting 
line segments from edges than Hough lines solution. It is 
therefore an efficient (fast) solution. 

Our new Line Detection Algorithm using Contours 
(called the LDC algorithm) is explained in Section III. It 
covers each step involved in the process in order to retrieve 
the line segments from true colour images. Section IV is 
dedicated to the experimental results of the comparison 
between LDC and the built-in Hough Lines (HL) OpenCV1 
implementation. This test among the algorithms is realized 
over a set of 30 random images with different resolution 

 
1 OpenCV (Open Source Computer Vision) is a computer vision library 

originally developed by Intel. It is free for commercial and research use 
under a BSD license.  

sizes. The two tests realized for the built-in OpenCV Hough 
transform based algorithm, uses a probabilistic Hough 
transform variant [12]. It returns line segments rather than 
the whole lines. This variant is more efficient that the classic 
Hough Lines algorithm [12]. Conclusion and references 
complete this article.  

II. RELATED WORK 
There are a number of schemes studying whether or not 

an edge is a line. For example, several schemes for 
measuring linearity of point sets (edge pixels) are described 
in [11]. However, if two or more lines are located on the 
same connected edge, these algorithms do not discover 
them.  

Our literature review identified only one widely used line 
detection approach, the Hough Transform [4] method. This 
method maps points (pixels) from their Cartesian image 
space (x, y) extracted by an edge detecting operator to a 
curve in polar coordinates (r, ). OpenCV uses the transform 
where r are  are the distance from the origin, and the angle 
of the normal to a line passing through (x, y), respectively. 
These polar coordinate curves create accumulations of 
points in this space, of which local maxima values 
correspond to existing lines in the image. This method uses 
high complexity operations like sine and cosine calculations 
for each pixel. The other methods are mostly variations and 
extensions [1][5] of this classical one, mostly to improve 
their execution time. Other implementations utilize a 
convolution matrix and eigenvalue analysis of pictures [6]. 
Hough Lines uses a progressive probabilistic Hough 
Transform (PPHT [15], [17]) in order to considerably 
reduce the computation needed from the classical method 
and also give information on segment endpoints. Only a 
fraction of the points are accumulated, and a maximum gap 
parameter between lines segments is applied to connect 
otherwise isolated pixels into connected line segments. 
Other parameters include minimum gap between segments, 
minimal length of line segments and parameters related to 
the accumulator space. 

III. LINE SEGMENT DETECTION AND LINEARITY 
 

This section will cover our LDC (Line Detection from 
Contour) algorithm in order to retrieve straight line 
segments from colour images with linear execution time in 
number of pixels in the image. The algorithm was 
implemented with OpenCV and EmguCV 2 using the C# 
language on the .Net platform. The experimental comparison 
results data between LDC and the two tests of the OpenCV 
built-in Hough Line algorithm – HL1 and HL2- are in the 
following Section IV. 

 
2 EmguCV is an Open Source cross platform – Gnu Linux, Mac, and 

Windows - .Net wrapper to the Intel OpenCV image-processing library. 
Allowing OpenCV functions to be called from .NET compatible  
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A. Overview of the LDC Algorithm 
Our algorithm uses any (colour) image as input and 

produces a set of linear segments as output. Each segment is 
defined by two integer points (x0, y0) and (x1, y1) in the 
image following a discrete linearity criteria classification.  
More precisely, the input of our algorithm consists of: the 
true colour image (of any resolution) and 5 configuration 
parameters (to be discussed in appropriate sections). They 
are labelled as follows:  

 
 Normalize (N),  
 Gaussian kernel size (GKS),  
 Laplace aperture size (LAS),  
 Threshold (TH), and  
 Minimum length contour (MLC).   

The output of our LDC algorithm is a list of recognized 
connected lines in the image, each with its beginning and 
ending pixels, and all the intermediate pixels, with single 
pixel width. Consecutive line segments share endpoint. 

In order to retrieve these segments, image processing 
algorithms that are commonly used in computer vision are 
applied to the images. Our LDC Algorithm is composed of 7 
steps: Gray scale conversion, Normalization, Gaussian 
Smooth, Laplacian operator, Threshold, Contours 
Extraction, and Segmenting Contours. The first 6 steps used 
are well known image processing algorithms and the last 
step, Segmenting Contour, is our implementation to extract 
straight line segments of the objects inside the image.  It is 
the main novelty of this article. 

The first step of our algorithm (conversion from colour to 
gray scale image) doesn’t use any configuration parameter. 
Normalize (N) is a Boolean parameter which decides 
whether or not we want to apply normalization process to 
the input image. GKS and LAS are the sizes of the 
Gaussian’s and Laplace’s kernels, respectively, to convolute 
the image. TH is the intensity value used to extract the edges 
after the Laplace filter was applied, and therefore it produces 
binary image as its output. Finally the MLC is the minimum 
amount of pixels that a contour must have to be accepted as 
a line in our final Segmenting Contour step.  

We will first briefly describe the main idea. The colour 
input image is passed through several image processing 
algorithms. The image is converted to gray scale; possibly 
normalized, smoothed, edges are extracted and thresholded 
to produce a binary image input. Contours are then created 
for each candidate edge. After these steps, we scan the list of 
points of the contours with time complexity O(n)  (where n 
is the total number of pixels in all of the contours), looking 
for segments, or sections of the list of pixels which gives the 
notion of linearity. The final result will be a list of line 
segments; each segment will be represented by a starting and 
ending pixel position in the image space. 

B. Edge Detection from colour images 
Our first step is to convert the input colour image to a 

gray scale image using CvGray, which is an OpenCV built-
in function [10]. The value of the gray pixel is a number 

between 0 and 255 and it’s computed as the 29.9% of the 
red component, 58.7% of the green, and 11.4% of blue 
channel of the same pixel in the input image [9][12].  

The normalization procedure is optional in our algorithm. 
If N is ‘true’ then the image is normalized to the range 
[0,255]. For example, if the input image has intensity range 
[70,201], normalization is done by first subtracting 70, then 
multiplying by 255/201 and rounding. Edge detection may 
be difficult if the image is affected by illumination problems, 
and normalization creates higher intensity contrasts. 
However sometimes it may be somewhat detrimental, 
introducing noise in the image.  

The next two steps, Gaussian smooth and Laplace edge 
detection are implemented by convoluting the image 
(applying an appropriate filter) [13] [12]. The Gaussian 
smooth step is used to remove noise in the image and leave 
only the main contours. This blur process has the property of 
reducing noise and leaving the more important boundaries of 
the object in the image. The Gaussian kernel matrices for 
computing the Gaussian blur/smooth are defined by their 
size (small odd number GKS between 1 and 19).  

 
Fig.2. Edge detection algorithm examples: Laplace, Canny and Sobel. We 
applied a binary threshold to each image for better view of the edges.  

After several tests on edge detection algorithms like 
Sobel, Canny, Predefined Convolution kernels, and the 
Laplacian operator, we found that the Laplacian operator 
was the one that produced the best results for our goal. It 
had sharper edges describing the boundaries of objects. This 
is illustrated on an example in Figure 2. Also, it only has one 
parameter to configure, the aperture size of the kernel, to 
apply to the image. This aperture size parameter LAS must 
be 3, 5 or 7 [12], and defines k x k kernel for k = LAS. This 
method will make the image zones brighter where edges are 
found. 

After these steps, we apply a binary threshold TH to 
create a binary image. All the pixels with intensity values 
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greater than or equal to TH become white, representing 
brighter areas in the image (edges). The other pixels become 
black. 

C. Extracting Contours 
We then retrieve the list of all contours, external and 

internal using the findContours method of the OpenCV 
library. Contours are a list of sorted point’s pixels inside the 
image where each pixel has information about the next 
neighbouring point. These contours surround the different 
white connected components in the binary input image. 
Because of the complex object we might find inside an 
image, we are going to retrieve all the internal and external 
contours in order to analyse them. The points inside the 
contours are clockwise oriented. As part of our algorithm, 
we introduced a threshold parameter MLC, to consider only 
contours with at least MLC pixels. It will filter out too short 
lines.  

D. Repeated Segment Directions on Image Contours 
Our algorithm for this step identifies line segments with 

any orientation inside the contours in time complexity O(n), 
where n is the number of points in the contours we are 
analysing. Therefore, this final step does not compromise 
the execution time for the whole line segment detection 
algorithm. The total time complexity is dominated by the 
pre-processing steps that require processing of every pixel in 
the image, and has time complexity O(r2), where r is the 
number of rows/columns in the image. 

1) Overview of the algorithm: Our next and final step is to 
analyse the list of points on each contour in order to find 
straight lines under a discrete linearity criterion. This 
produces an incomplete polygonization: the pixels not 
recognized as part of any line as dropped, while others are 
listed as line segments between two endpoints. 

We will process the contour in the order given by the 
OpenCV built-in findContours algorithm. Each contour is 
divided into fragments. Each fragment contains  
consecutive pixels.  Neighbouring fragments share 
endpoints. A line segment consists of several consecutive 
fragments. Some fragments will not be associated with any 
line segment, and each fragment may be part of only one 
line segment. In our implementation, we used a fragment 
size of =5 pixels. The rest of the description is dependent 
on this choice; other choices require designing appropriate 
fragment classification scheme before detecting line 
segments. Because of sharing endpoints, each fragment has 

+1 pixels, including endpoints. 
Our algorithm will classify each fragment using its slope, 

and will then attempt to identify repeated patterns of the 
same slope to create a (straight) line segment. A segment 
will keep all the information about the contour pixels and 
two main points: the starting pixel (x0, y0) and the ending 
pixel (x1, y1). These endpoints are the first pixel of the first 
fragment and the last pixel of the final fragment in detected 
line segment. Each fragment will be classified according to 

its slope into nine possible categories 0-8. This produces an 
integer sequence of line slopes for further processing. 

2) Slope classification and fragmentation: Our 
classification is shown in Figure 3. Diagonal lines are 
discretized to produce a division of an 11x11 matrix into 9 
areas, labelled 0-8. The central 3x3 region is labelled 0 and 
represents class 0. Classes 1-8 correspond to eight 
approximate directions respectively: east, south-east, south, 
south-west, west, north-west, north, and north-east. Each 
fragment is classified in the following way. The beginning 
of the fragment is placed in the centre of the 11x11 matrix. 
The fragment is classified according to the location of its 
endpoint in this matrix, and receives the label associated 
with it. Class 0 is a ‘neutral’ direction, or a lack of direction. 
It represents fragments that do not make sufficient progress 
in any direction, and can be treated as loops. This class was 
introduced due to the irregularity and noise in the edge 
detection steps. Progress with distances of at least 2 from the 
center in one of the directions suffices to classify slopes into 
one of the 8 classes. The location of intermediate pixels does 
not impact the classification. Fig. 4 shows a fragment of 
class 8, between two black pixels.  

Figure 5 illustrates the classification process for 
fragments. The six fragments shown are classified as 88828. 
This representation will help us explain some of the criteria 
above.   

 

 
Fig.3. The 9 classes classification matrix used in our LDC algorithm.  

 
Fig.4. Two black pixels inside the contours indicate the starting and ending 
pixels of a fragment of class 8. 
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3) Merging Fragments into segments: The sequence of 
fragment classification values will be further processed to 
identify line segments, corresponding roughly to a sufficient 
number of repeated fragment slopes. Our exact criteria to 
detect line segments from fragments are: 

A). A segment has at least X fragments of the same 
slope classification. 

B). Two segments with the same slope classification, 
separated by less than X fragments with different 
classification, will create a single segment with all 
the fragments from and between both segments. 

C). The 0 slope classification is a neutral position for 
the algorithm. It will not interfere in the 
classification of any segments; it will be treated as 
being same class as the previous class in the 
sequence.  

D). If the starting fragment and final fragment of a 
contour have the same classification then they join 
in a same segment with length equal to the sum of 
both. 

 

 
Fig.5. Line sequence example of fragments produced by LDC algorithm. 
Lines above the class number represent line segments recognized in the 
patterns. The circled area represents how the matrix is used to classify them.  

Our algorithm uses an X value of 3; this means that at 
least 3 consecutive class values are needed to declare it a 
segment. Fig. 6 shows some examples of extracting line 
segments from sequences of classified fragments. In Fig. 
6a), 4 lines segments are detected, based on rule A), repeated 
patterns of 8 (line segment 888888), 1(line segment 11111), 
5 (segment 555555), and 1 (segment 11111111), 
respectively.  

 
Fig. 6. Line segments extraction from sequences of classified fragments. In 
example a) 4 line segments are extracted using rule A). Example b) uses 

rules A) and C) extracting 3 line segments. Example c) extracts 2 line 
segments using the rules A), B), and C).  

In the Fig. 6b), the sequence 0000 is inserted into the 
larger fragment 333333000033, using rule C). Similarly, 0, 
00, and 0 are inserted into 5555 to produce line segment 
50500505. Since the endpoint of fragment of class 0 is a 
neighbour of its starting point (distance 1), this naturally 
corresponds to a continuation of the same line segment, 
ignoring some ‘noise’ around some pixels.  

In Fig. 6c), rule B) is applied to produce a single segment 
111112211111341111 out of the initially produced 
segments 11111, 11111 and 1111, since the inserted 22 and 
34 which are used to merge them are shorter than minimal 
length X=3 needed to ‘break’ the sequence. In the same row, 
500 is also declared a line segment (rule C). This 
corresponds to the current implementation and is subject to 
discussion, and can be changed later. We opted to preserve 
simplicity and to allow segment extensions by single pixel 
distances per fragment. It can be also perceived as line 
segments with somewhat shorter length than the minimal 
specified which does not necessarily mean erroneous 
classification.  

The accuracy of any line detection algorithm is evaluated 
by subjective judgment. Nevertheless the appealing results 
are hard to deny. Fig. 7 shows the output for one input 
example. More examples are in Fig. 8. 

 
Fig.7. Line Segments detected by LDC from two tank pictures. Fig 7a) is a 
real photo and b) is a 3D model of a tank.  

IV. EXPERIMENTAL DATA 
We compared our newly proposed LDC algorithm with 

what appears to be a widely accepted way to extract line 
segments in literature using the OpenCV library. Since the 
Canny edge detector was regularly associated with the 
Hough Lines [13], the comparison was made with the GCH 
algorithm, which represents a sequence of Gray Scale + 
Canny + HL (the OpenCV built-in PPHT Hough Lines) 
algorithm. In this implementation we used the Open Sources 
OpenCV 1.0 library and the EmguCV 1.2.2.0 project, .Net 
wrapper to OpenCV, and the C# language. The complete 
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experiment was tested under a 32 bits Intel Mobile 2.0 GHz 
CPU technology with 1 GB RAM laptop. 

Our goal was to measure the processing time and the sets 
the lines detected by both algorithms. Processing time was 
compared separately for two steps: from colour image to 
edge extraction, and from edge to line segment extraction. 
Both LDC and GCH are then divided into corresponding 
parts. LDC=GB+CS, where GB stands for the sequence of 
Gray scale conversion from colour images, normalization, 
Gaussian smooth, Laplacian operator and binary 
thresholding, and CS is a sequence of contour extraction 
(which includes finding connected components) and 
segmenting contours. GCH=GC+HL consist of GC (Gray 
scale conversion followed by Canny edge detection) and HL 
(Hough Lines algorithm) which doesn’t use connected 
components or contours to extract lines and instead maps 
some pixels to the dual accumulator space.  

 

 
Fig. 8. Examples b), c), d), e), and g) are from the 30 image set used in the 
experimental data. The amount of lines detected by LDC is 46, 22, 24, 26, 
160, and 54 respectively. Two parameter choices HL1 and HL2 had 13, 34, 
28, 40, 62, and respectively 10, 12, 13, 82, 65 lines. Examples a) and f) 

show us real pictures processed for the algorithms and how our solution is 
closer to human classification.  

 
The outcome of HL (and consequently GCH) was very 

sensitive, for all images, to the parameter choices. Even 
small changes in some parameters have led to quite different 
number of lines detected. Human intervention for obtaining 
satisfactory outcome in HL was essential and time 
consuming. Larger number of parameters in GCH also 
contributed to this. The best set of parameter values is 
picture dependent. For fairer comparison, we included two 
parameter choices in GCH for each of 30 selected pictures 
(24 bit-depth, 96 dpi), and only one for LDC. One obvious 
observation from this exercise was that LDC proved to be 
significantly more robust solution than GCH, due to 
significantly less sensitivity of the outcome to changes in 
parameter values. The picture set selected consisted of 
colors depth images with both planar shapes and real 
environment pictures. The spatial resolution of these images 
ranges from 256x256 to 2048x1536. Here we show average 
results for the set of 30 images.  

The mean processing time of our LDC algorithm was 0.11 
seconds with 0.11±0.04 of a 95% confidence level. The 
GCH mean was 0.15 seconds, with and 0.15±0.05 95% 
confidence interval. Therefore there exists a small but 
statistically insignificant difference in favour of our LCD 
algorithm since the confidence intervals overlap.  

The next comparison measured processing times starting 
from binary images. Our CS is about twice faster than the 
competing HL algorithm, and the difference is statistically 
significant. The average processing time of CS was 0.03 
seconds, with 95% confidence interval of 0.03±0.015. The 
corresponding means and confidence intervals for HL were 
0.07 seconds, and 0.07±0.028, respectively. The processing 
dominant times to convert color image to binary were 
identical: 0.08±0.029 for GB and 0.08±0.025 for GC.  

Our next and most important experiment compared the 
accuracy of the line detection process. Figure 8 shows 7 out 
of 30 images from our experimental set. In some examples 
the actual number of lines is obvious. Images in Fig 8c), d), 
e), and g) have 12, 13, 80 and 27 lines respectively, and our 
LDC algorithm retrieves exactly twice as many lines (24, 26, 
160 and 54) because of easily removable duplication. The 
number of lines extracted by the GCH is quite different, 
sensitive to parameter choices, and in disagreement with 
human observation, mostly due to missing many line 
segments. Human classification might yield about 20 line 
segments for Fig. 8b). LDC retrieves 46 (or 23 actual ones), 
while two parameter choices for GCH yielded only 13 and 
10 lines, despite the edges being intuitively obvious. The 
LDC algorithm also produces more appealing line segments 
for the car in Fig. 8f) and cellular phones in Fig. 8a) 
compared to GCH Hough transform based algorithm. 
Overall, better results for our method were obtained for 
every image from our set. 

Finally, we computed the linearity SNZ [11] value for 
each of the line segments detected by LDC in the image set. 
The SNZ linearity value range is from 0 to 1 where values 
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nearest to 1 mean highly linear. The value is computed 
based on coordinates of each pixel from a given line 
segment. Because of discretization, perfect 1 scores are 
rarely possible. The 95% confidence interval for the 
linearity values was 0.970335 ±0.006729754. This shows 
that detected line segments are indeed representing lines, 
with almost perfect linearity score and consequently small 
deviation. 

V. CONCLUSION 
There is no widely accepted criterion for judging whether 

or not an edge is a (straight) line. The judgment is subjective 
or is based on usefulness in a particular application. We 
demonstrated that our algorithm achieves better accuracy in 
terms of the stated problem, and are closer to human 
classification than the Hough Lines algorithm for different 
input parameter configurations. Although Hough transform 
might be a simple algorithm to compute lines theoretically, 
it’s not so simple in practice. Our algorithm doesn’t need 
high complexity operations like sine and cosine, and finding 
local maxima points in the accumulation space. The creation 
of the accumulator space is a time consuming process, since 
each pixel is converted to a digital line. Our algorithm is 
considerably simpler to implement and understand, and is 
faster, especially in the line extraction step.  

Our LDC solution appears also robust to any orientation 
and slope and invariant to image transformations such as 
scaling, rotation and translation. LDC also has smaller set of 
parameters. Compared to HL, the set of parameters used in 
LDC is more predictable and can be applied almost 
independently on an input picture, while HL requires fine 
tuning of parameters for each picture to arrive at satisfactory 
line extraction. 

LCD algorithm can be further improved. Eliminating 
duplicate lines is easy. There are some pathological cases; 
for example, stair like structure may be declared a single 
line. The rules for accepting a line could be fine-tuned, 
including the change of variable X for minimal number of 
fragments to make a segment. The fragment size  may be 
increased and more directions could be considered. The 
insertion of neutral fragments into a line may be 
reconsidered. This and other improvements are left for the 
future work.  
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